Erler & Kalinowski, Inc.

Consulting Engineers and Scientists

Santa Monica Business Park 2951 28th Street, Suite 1020 Santa Monica, California 90405 (310) 314-8855

Fax (310) 314-8860

18 February 1998

Eli Stanesa, Esquire Law Department Jervis B. Webb Company 34375 West Twelve Mile Road Farmington Hills, Michigan 48331-5624

Subject: Phase II Soil Investigation Report for the Jervis B. Webb Company Property at 5030 Firestone Boulevard in South Gate, California (EKI 961025.02)

Dear Mr. Stanesa:

Erler & Kalinowski, Inc. ("EKI") is pleased to submit this *Phase II Soil Investigation Report* ("Assessment") for the Jervis B. Webb Company of California ("Webb") property at 5030 Firestone Boulevard in South Gate, California ("Subject Property"). This Assessment was prepared in accordance with the Agreement, dated 25 November 1997, between Webb and EKI.

Limitations of Assessment

The conclusions and recommendations presented in the attached Assessment are our professional opinion and are not a warranty or guaranty as to the presence, absence, or extent contamination at the Subject Property or of releases from or near the Subject Property. The facts presented in the Assessment are based on available information obtained by EKI and represent existing conditions at the Subject Property at the time the information was collected. This Assessment is intended for the sole use of Webb. Unless specifically authorized to execution of an agreement between EKI and any third party in a form and content approved by EKI, use or reliance by any other entity is not permitted or authorized.

Please call if you have any questions.

Very truly yours,

ERLER & KALINOWSKI, INC.

Seem & Miller

Steven G. Miller, P.E. (Civil Engineer, Certificate 43419)

Project Manager

Attachment - Phase II Soil Investigation Report

Phase II Soil Investigation Report

5030 Firestone Boulevard South Gate, California

18 February 1998

Erler & Kalinowski, Inc.

Consulting Engineers and Scientists 2951 28th Street, Suite 1020 Santa Monica, California 90405 (310) 314-8855

Fax: (310) 314-8860

Phase II Soil Investigation Report Jervis B. Webb Company Property 5030 Firestone Boulevard, South Gate, California

Table of Contents

1. EXECUTIVE SUMMARY	1-1
2. INTRODUCTION	2-1
3. DESCRIPTION OF SUBJECT PROPERTY	3-1
3.1. Location and Size of Subject Property	3-1
3.2. Current Site Features	3-1
3.3. Historical Site Use and Agency Records Reviews	3-1
4. REGIONAL HYDROGEOLOGICAL CONDITIONS	4-1
4.1. Regional Aquifers	4-2
4.2. Regional and Local Groundwater Flow	4-2
5. SUBSURFACE INVESTIGATIONS	
	5-1
5. SUBSURFACE INVESTIGATIONS	5-1 5-2
5. SUBSURFACE INVESTIGATIONS	5-1 5-2
5.1. Field Procedures	5-15-25-2
5.1.1. Geophysical Surveys	
5.1. Field Procedures	5-15-25-25-25-3
5.1. Field Procedures	5-15-25-25-25-35-4

Phase II Soil Investigation Report Jervis B. Webb Company Property 5030 Firestone Boulevard, South Gate, California

Table of Contents

5.3. Summary of Soil Boring and Soil Sampling Results	5-6
5.3.1. Analytical Results for Soil Sampling	5-6
5.3.2. Quality Assurance/Quality Control for Soil Chemical Analyses	5-7
5.3.3. Soil Geotechnical Testing Results	5-7
5.3.4. Characterization of Vadose Zone Soils	5-8
6. FINDINGS	6-1
6.1 Chemicals of Concern	6-1
6.2 Potential Source Areas	6-1
6.3 Distribution of TCE and PCE in Vadose Soil	6-1
5.4 Conclusions	6-2
7. REFERENCES	7-1

Phase II Soil Investigation Report Jervis B. Webb Company Property 5030 Firestone Boulevard, South Gate, California

Table of Contents

LIST OF TABLES

1	Soil Gas Analytical Results for VOCs
2	Soil Analytical Results for pH
3	Soil Analytical Results for TEPH
4	Soil Analytical Results for Metals
5	Soil Analytical Results for VOCs
6	Soil Geotechnical Testing Results

LIST OF FIGURES

1	Site Location Map
2	Subject Property Features
3	Locations of Soil and Soil Gas Sampling
4	Concentrations of TCE Detected in Shallow Soil Gas
5	Concentrations of PCE Dettected in Shallow Soil Gas
6	Concentrations of 1,1,1-TCA Detected in Shallow Soil Gas
7	Concentrations of TCE in Detected in Soil
8	Concentrations of PCE in Detected in Soil
9	Plan Map Showing Deep Soil Cross Section Through
	Clarifier Area
10	Cross Section A-A'Showing Concentrations of TCE in
	Vadose Zone Soil
11	Approximate Lateral Extent of TCE Detected in Soil at
	Approximately 20 Feet Below Ground Surface
12	Approximate Lateral Extent of TCE Detected in Soil at
	Approximately 40 Feet Below Ground Surface

LIST OF APPENDICES

Α	Site Background Information
В	Boring Logs
C	InterPhase Report on Soil Gas Sampling
D	Laboratory Report and Chain-of-Custody
	for Soil Chemical Analyses
E	Laboratory Report for Soil Geotechnical Analyses

1. EXECUTIVE SUMMARY

Erler & Kalinowski, Inc. ("EKI") was retained by the Jervis B. Webb Company ("Webb") to perform a series of environmental investigations of the property at 5030 Firestone Boulevard in South Gate, California ("Subject Property"). The *Phase II Soil Investigation Report* summarizes investigations of the Subject Property completed by EKI through December 1997. A brief summary of the major findings of EKI's investigations at the Subject Property follows:

- 1. The Subject Property consists of a single parcel of land approximately 1.4 acres in size and contains one single-story former manufacturing building of approximately 20,000 square feet. The property was apparently developed between 1950 and 1953.
- 2. Blake Rivet Company ("Blake") manufactured aircraft rivets at the Subject Property from the 1950s until approximately 1980. Blake's manufacturing process at the Subject Property included an above ground anodizing operation that generated wastewater. Wastewater was discharged, pursuant to a permit, to a three-stage clarifier and then to the sanitary sewer. Blake apparently stored a number of raw materials at the Subject Property including metal stock and anodizing solutions. Documents available to EKI did not identify historical use or storage of chlorinated organic solvents at the Subject Property.
- 3. Following Blake, Webb used the Subject Property for storage of metal stock, equipment and other materials. The concrete area at the location of the clarifier was also used by Webb for temporary storage of drums of hazardous wastes. The clarifier was not used by Webb. EKI completed an initial inspection of the Subject Property on 10 April 1996. No drums or significant staining of concrete or asphalt around the clarifier was observed by EKI during the site inspection. Currently, the property is unoccupied and has been cleared of all equipment and materials. The clarifier is currently filled with sand.

Webb manufacturing operations were primarily located on the adjacent off-site property at 9301 Rayo Avenue ("Rayo Property"). Webb's activities at 9301 Rayo Avenue included metal fabrication, finishing, painting and assembly operations associated with the manufacture of industrial conveyor systems.

4. EKI observed indications of below ground concrete structures at several locations in the building. These include a concrete-lined sump and a shallow concrete-lined machine trench. The concrete floor in the building contains numerous patches where former structures or improvements may have been located. Concrete in the former anodizing area of the building is pitted, etched, broken and or cracking in several areas.

- 5. On 28 October 1997, Vironex, Inc. ("Vironex") of El Segundo, California completed fourteen soil borings at the Subject Property. The objective of the soil investigation was to provide chemical data to determine whether chemical releases occurred in former chemical use and storage areas at the Subject Property. Soil was cored to maximum depths ranging from approximately 10 feet below ground surface ("ft bgs") at various locations inside and outside the building, and to 20 ft bgs in the immediate vicinity of the clarifier. Soil samples were analyzed for pH by EPA Method 9045, total extractable petroleum hydrocarbons ("TEPH") by EPA Method 8015 modified, California Code of Regulations Metals ("CCR-Metals"), and volatile organic compounds ("VOCs") by EPA Methods 8240 and 8010.
- 6. Fourteen soil samples were analyzed for CCR metals. CCR metals were not detected at elevated concentrations in soil samples collected from beneath and around the clarifier and from other former process areas. Only one of the fourteen analyses for metals had a detectable concentration of hexavalent chromium, sample B4-10.5 had a concentration of 0.88 milligrams per kilogram ("mg/kg"). Samples of soil from above and below sample B4-10.5 (samples B4-6 and B4-16) did not have detectable hexavalent chromium.
- 7. TEPH was not detected in any of the ten soil samples analyzed for it. Soil pH was found to range from 6.3 to 8.8 in the samples analyzed.
- 8. VOCs were detected in samples of soil collected during the October 1997 soil investigation. Trichloroethene ("TCE") and tetrachloroethene ("PCE") were detected at maximum concentrations of 270 mg/kg and 140 mg/kg, respectively, in one soil sample (B4-20.5) collected from approximately 20 ft bgs beneath the clarifier. TCE and PCE were detected in most of the soil samples collected during October 1997 in the area of the former anodizing operations and, except for samples from boring B4, were detected at concentrations of less than 1 mg/kg. No other VOCs were detected.
- 9. On 1 and 2 December 1997, Interphase, Inc. ("Interphase") of Commerce, California completed a soil gas survey at the Subject Property. The objective of the soil gas survey was to provide additional subsurface data to identify potential source areas for the VOCs detected in samples of soil collected during the October 1997 investigation. Soil gas samples were collected from 37 separate locations at a depth of approximately 5 ft bgs and analyzed for 23 VOCs consistent with California Regional Water Quality Control Board Los Angeles Region ("RWQCB") Primary Target Compounds.

The analytical data from the soil gas survey indicated that TCE and PCE are the primary chemicals of concern in shallow soil at the Subject Property. TCE was detected at concentrations ranging from 0.074 micrograms per liter ("ug/L") to 25 ug/L. PCE was detected at concentrations ranging from 0.021 ug/L to 28 ug/L. 1,1,1-Trichloroethane ("1,1,1-TCA") was also detected at low concentrations in approximately half of the soil gas samples with a maximum of 0.89 ug/L.

Chloroform, dichlorodifluoromethane ("Freon-12"), and trichlorofluoromethane ("Freon-11") were also detected in a few samples at low concentrations.

- 10. On 2 and 3 December 1997, West Hazmat Drilling Corporation ("West Hazmat") of Anaheim, California completed five deep soil borings at the Subject Property. The purpose of the deep soil investigation was to determine the vertical extent of VOC occurrence in unsaturated soil beneath the clarifier and anodizing area. Soil borings were completed to maximum depths ranging from 46.5 to 62.5 ft bgs. Groundwater was encountered at a depth of approximately 57 ft bgs. Soil samples were analyzed for VOCs by EPA Method 8010. Additional soil samples were analyzed for geotechnical properties.
- 11. TCE and PCE were detected in samples of soil collected during the December 1997 investigation. TCE was detected at concentrations ranging from 0.048 mg/kg to 16 mg/kg. PCE was detected at concentrations ranging from 0.026 mg/kg to 0.66 mg/kg. TCE was detected in the deepest soil samples collected from each boring completed during the December 1997 investigation at concentrations ranging from 1.3 mg/kg to 8.7 mg/kg.
- 12. During the December 1997 investigation, twelve soil samples were selected for geotechnical analyses including total carbon by the Walkley-Black method, moisture content by ASTM Method D2216, dry density by ASTM Method D2937, and effective permeability and air conductivity by API Method RP40. The soil samples analyzed for geotechnical properties were selected to represent most of the geologic materials encountered in the vadose zone. Analytical results indicate significant soil moisture and total carbon concentrations in the vadose zone. Moisture content ranged from 7% to 39.9%. Total organic carbon ranged from not detected to a concentration of 1.11%. Dry soil density ranged from 82.8 pounds per cubic foot ("pcf") to 112.8 pcf. Of twelve samples analyzed for air conductivity and effective permeability, six samples did not conduct air.

On the basis of the results of investigations conducted to date it appears that further actions are necessary to address the presence of VOCs in the subsurface at the Subject property.

2. INTRODUCTION

On behalf of Jervis B. Webb Company ("Webb"), Erler & Kalinowski, Inc. ("EKI") is pleased to present this *Phase II Soil Investigation Report* for the property located at 5030 Firestone Boulevard in South Gate, California ("Subject Property").

Webb retained EKI to perform a soil investigation to investigate chemical releases associated with former manufacturing at the Subject Property. Previous activities and areas of environmental concern at the Subject Property were identified in a *Phase I Environmental Site Assessment* by EKI dated 20 June 1996.

EKI's soil investigations included identification of subsurface lithologies, chemical analyses of soil and soil gas samples, analyses of soil geotechnical properties, and determination of the depth to groundwater.

EKI's investigations of the Subject Property were performed in accordance with applicable guidelines and general requirements of the California Regional Water Quality Control Board, Los Angeles Region ("RWQCB") concerning subsurface investigations. EKI investigation activities were performed under the supervision of Mr. Steven G. Miller, P.E., a State of California registered civil engineer.

3. DESCRIPTION OF SUBJECT PROPERTY

3.1. Location and Size of Subject Property

The Subject Property is located at 5030 Firestone Boulevard in South Gate, California (see Figure 1, USGS, 1964). The Subject Property is bounded to the northwest by Firestone Boulevard. To the east and southeast are commercial/industrial properties. To the south and southeast is the 9301 Rayo Avenue property ("Rayo Property") that was also formerly occupied by Webb. Along the southwest side of the Subject Property are Union Pacific railroad tracks. An easement containing a large underground storm drain is located along the westerly side of the Subject Property. The Subject Property is approximately 1.4 acres in size (Webb, 1995).

3.2. Current Site Features

The Subject Property contains a single-story, former manufacturing building. The building occupies an area of roughly 20,000 square feet (Webb, 1995). The roof of the building contains several vents of various dimensions. The floor of the building consists of a concrete slab of variable thickness. The locations of key site features are shown on Figure 2. A more detailed description of current site conditions is provided in the summary of site background information in Appendix A.

The area around the building is covered with asphalt or concrete except for a planted area at the north end of the building. An out-of-service railroad spur passes through the west side of the parcel toward the southern boundary of the Property. A large underground storm drain passes through the Subject Property approximately parallel to the western property line and proceeds to the southeast through the Rayo Property. A utility line which EKI believes to be a sanitary sewer pipeline crosses the eastern side of the Subject Property and proceeds through the Subject Property toward the Rayo Property where is apparently discharges to a sewer line in Rayo Avenue. Former electrical and telephone service enter the property via overhead lines extending into the property also from the northeast. No pole-mounted or other transformers were observed within the property. A natural gas meter was observed on the southeast side of the building. The entrance to the Subject Property from Firestone Boulevard has been temporarily fenced. Access to the property is currently through the adjacent property located at 9301 Rayo Avenue.

3.3. Historical Site Use and Agency Records Reviews

EKI has reviewed documents provided by Webb, historical aerial photographs, and selected regulatory agency files. A summary of site background information obtained from EKI's review of these documents is provided in Appendix A.

4. REGIONAL HYDROGEOLOGICAL CONDITIONS

Unless otherwise noted, the information provided in this section was obtained from the California Department of Water Resources ("DWR") Bulletin No. 104: Planned Utilization of the Groundwater Basins of the Coastal Plain of Los Angeles County, Appendix A, Groundwater Geology dated June 1961.

The Subject Property is located in the Central Basin Pressure Area of the Central Basin of the Coastal Plain of Los Angeles County. Ground surface elevation at the Subject Property is roughly 110 feet above mean sea level (USGS, 1964). The surface topography of the Subject Property and vicinity appears to slope gently to the southeast in the general direction of the Los Angeles River. The Los Angeles River is located approximately 1,200 feet east of the Subject Property at its nearest location (see Figure 1, DWR, 1964).

The Subject Property is located within the Downey Plain, an alluvial depositional feature of Recent age that extends across the central lowland areas of the Central Basin. Depositional materials associated with this feature were deposited as alluvial fans formed by the Los Angeles and Rio Hondo-San Gabriel River systems. These alluvial systems have formed a very gentle plain. However, during past flood times these large rivers have produced some erosional terraces and deposited debris over most of the area. The materials associated with the Downey Plain are also referred to as Recent Alluvium. Little deformation of the Recent alluvial sediments has occurred except where they cross techtonically active areas.

The Subject Property is located along the northern axis of the Paramount Syncline, a depressional deformation feature trending northwest-southeast in the vicinity of the Subject Property. This structure was formed by the Early Pleistocene deformation of the Central Basin. The trough-shaped geometry of this structure has produced folding of Early Pleistocene deposits of primarily the Lakewood and San Pedro Formations. According to DWR, no displacement of aquifers is apparent in the vicinity of the Subject Property.

The water-bearing materials composing the groundwater basin in the vicinity of the Subject Property are Recent to Pliocene in age. These materials include unconsolidated and semi-consolidated marine and non-marine alluvial sediments. Sizes of individual particles grades from course gravel and boulders to clay. Following is a description of the major aquifers that comprise the groundwater basin in the vicinity of the Subject Property.

4.1. Regional Aquifers

The area of the Subject Property is underlain by several major hydrostratigraphic units within three geological formations: the Recent Alluvium, Lakewood Formation and San Pedro Formation. In the vicinity of the Subject Property the Recent Alluvium is present from surface elevation (110 feet above mean sea level "ft. msl") to approximately 20 to 80 ft bgs. The Recent Alluvium is apparently comprised of the Bellflower Aquiclude and Gaspur Aquifer. However, it is apparent that the Gaspur Aquifer may be partially or completely absent in the immediate vicinity of the Subject Property. In the absence of the Gaspur aquifer, an unnamed confining layer of the Lakewood Formation would compose a portion of the subsurface materials between 20 and 80 ft bgs. (Plates 6A and 6E, DWR, 1961).

The first aquifer in the vicinity of the Subject Property appears to be the Exposition Aquifer of the Lakewood Formation. The Exposition Aquifer reportedly begins at about 80 to 90 feet below ground surface and is roughly 100 to 120 feet thick. Underlying the Exposition Aquifer is an unnamed confining layer that may be present in substantial thickness in the vicinity of the Subject Property. Beneath the unnamed confining layer and/or Exposition Aquifer is the Gage Aquifer which is also part of the Lakewood Formation. The Gage Aquifer appears to begin at approximately 220 to 300 ft bgs, depending on the thickness of the unnamed confining layer, and is roughly 50 to 90 feet thick.

Beneath the Lakewood Formation is the San Pedro Formation which consists of, in descending order, a significant unnamed aquiclude, Jefferson Aquifer, Lynwood Aquifer, Silverado Aquifer, and Sunnyside Aquifer. The Jefferson, Lynwood and Silverado aquifers range in thickness from 80 to 250 feet thick in the vicinity of the Subject Property and may be interbedded by minor confining layers. The base of the Silverado Aquifer is approximately 930 to 950 ft bgs. The Silverado and Sunnyside Aquifers are interbedded by an unnamed confining layer approximately 260 to 340 feet in thickness. The Sunnyside Aquifer is 300 feet thick in the vicinity of the Subject Property. (Plates 6A and 6E, DWR, 1961).

Underlying the San Pedro Formation are the Pliocene marine sediments of the Pico Formation. Although portions of the Pico Formation may be sufficiently permeable to transmit water, the water is of poor quality and unsuitable for general use.

4.2. Regional and Local Groundwater Flow

According to the Water Replenishment District of Southern California ("WRD"), deep aquifer groundwater contours for water year 1995-1996 indicate southwesterly trending groundwater flow from the Whittier Narrows area into the Central Basin Pressure Area with a gradient of approximately 0.007 feet per foot. Depth to groundwater in the vicinity of the Subject Property is indicated to be approximately 80 to 90 ft bgs. (WRD, 1997)

Based on groundwater monitoring data from the Dial Corporation site, across Rayo Avenue and several hundred feet southeast of the Subject Property, groundwater flow is in a southerly direction at a gradient of approximately 0.003 feet/foot. The depth to groundwater in two monitoring wells located along Rayo Avenue ranged from about 45 to 55 ft bgs from April 1992 to April 1995. One well on the Dial Corporation site was found to have shallower perched groundwater (EMCON, 1995). Bechtel, however, reported that groundwater flow in the "upper group of aquifers" is to the north-northwest. (Bechtel 1994, page 6)

Actual depth to groundwater at the Subject Property was found to be approximately 57 ft bgs at the southeasterly boundary during investigations by EKI. The direction of groundwater flow in the water table aquifer beneath the Subject Property has not been determined.

5. SUBSURFACE INVESTIGATIONS

On 28 October 1997, Vironex, Inc. ("Vironex") of El Segundo, California, completed fourteen soil borings at the Subject Property to maximum depths ranging from 10 to 20 ft bgs. The objective of this soil investigation was to determine if chemicals of concern are present in soil at the Subject Property. Soil samples were analyzed for pH using EPA Method 9045, California Code of Regulation Metals ("CCR-Metals"), total extractable petroleum hydrocarbons ("TEPH") using EPA Method 8015 modified, and volatile organic compounds ("VOCs") using EPA Methods 8260 and 8010.

On 1 and 2 December 1997, Interphase, Inc. ("Interphase") of Commerce, California completed a soil gas survey at the Subject Property. The objective of the soil gas survey was to provide additional subsurface data to identify potential source areas for VOCs detected in soil collected during the October 1997 investigation. Soil gas samples were collected from 37 separate locations at a depth of approximately 5 ft bgs. Soil gas samples were analyzed for 23 VOCs in accordance with the RWQCB's Well Investigation Program ("WIP") Primary Target Compounds list.

On 2 and 3 December 1997, West Hazmat Drilling Corporation ("West Hazmat") of Anaheim, California completed five deep soil borings at the Subject Property. The purpose of the deep soil investigation was to provide additional data for characterization of the distribution of VOCs in the vadose zone and soil geotechnical properties. Soil borings were completed to maximum depths ranging from 46.5 to 62.5 ft bgs. Groundwater was determined to be present at a depth of approximately 57 ft bgs. Soil samples were analyzed for VOCs using EPA Method 8010.

The locations of soil borings and soil gas sampling locations at the Subject Property are shown on Figure 3. Field and analytical procedures performed during the investigations are described below. Analytical results for the soil gas survey and soil investigations are summarized below and provided in Tables 1 and 2, respectively. Results of soil geotechnical testing are summarized in Table 3. Contours of VOC concentrations detected in shallow soil gas are presented on Figures 4 through 6. Analytical results for soil sampling are presented on Figures 7 and 8. Boring logs containing lithologic descriptions of soil and depths of soil samples retained for analyses are provided in Appendix B. A complete report by Interphase, describing soil gas survey procedures and analytical data, is provided in Appendix C. Laboratory analytical data and Chain-of-Custody forms for soil samples are attached in Appendix D. Laboratory data and Chain-of-Custody forms for soil geotechnical testing are attached in Appendix E.

5.1. Field Procedures

5.1.1. Geophysical Surveys

EKI contracted with Spectrum Environmental Services, Inc. of San Fernando, California to conduct subsurface geophysical surveys of utilities located near each proposed drilling location at the Subject Property. Spectrum performed geophysical surveys on 24 October 1997 and 1 December 1997. Underground Services Alert ("USA" or Dig Alert) was notified 48-hours prior to the commencement of ground penetrating activities on 28 October 1997 and 1 through 3 December 1997.

5.1.2. Shallow Soil Boring Investigation

Coring of soil beneath the Subject Property on 28 October 1997 was performed by Vironex. EKI performed lithologic logging and selection of soil samples for chemical analysis and geotechnical testing. Soil lithologic classification was performed in accordance with the Unified Soil Classification System ("USCS"). Soil color descriptions were graded according to Munsell Soil Color Chips. Soil boring logs were approved by Ms. Beth Lamb, R.G., C.E.G., C.H., a State of California registered geologist. (see Appendix B)

Fourteen soil borings (B1 through B14) were completed as part of the October 1997 soil investigation (see Figure 3). Eleven soil borings were located in the central and southerly portions of the Property near the location of the clarifier, the former anodizing area, the former furnace pit, and near several suspected underground structures (described in Section 3.6.2.). Two additional soil borings (B12 and B13) were located in the northwest corner of the building in the former wire storage/receiving area, where additional concrete patches were observed by EKI. A final soil boring (B14) was installed in the parking lot north of the building for the purpose of collecting background soil samples for potential analysis of CCR-Metals pending results for soil samples collected in the former anodizing and clarifier areas. Samples from boring B14 were not analyzed.

Soil samples retained during the October 1997 soil investigation were collected from approximately 5-feet intervals from depths ranging from 2 ft bgs to 20 ft bgs. Soil borings B2, B3, and B5 through B14 were completed to approximately 10 ft bgs. Soil borings B1 and B4, located adjacent to the clarifier, were completed to approximately 20 ft bgs. Because the clarifier is located within an exterior building corner with limited access, borings B1 and B4 were situated at the nearest safe working distance to the clarifier. Boring B4 was installed at an angle of approximately 15 degrees from vertical to access soil beneath the clarifier at the maximum specified depth of 20 ft bgs.

Soil borings were completed using a Vironex half-ton truck with a Geoprobe sampling probe ("Soil probe"). The Soil probe utilized a 2-feet long by 1.5-inch outer diameter soil sampler and 1.5-inch outer diameter probe sections. The soil sampler, containing four pre-cleaned, 6-inch brass liners, was driven approximately 24 inches into undisturbed soil at each sampling interval, then retrieved and disassembled. One or two sample liners

were retained for laboratory chemical analysis at each sampling interval. Remaining sample liners were utilized for soil lithologic classification. Soil samples that were not retained for laboratory testing were placed into a DOT-approved 35-gallon drum for later disposal.

Soil sample liners retained for laboratory chemical analysis were removed from the sampler and separated with a clean knife. The ends of the brass tube containing the each sample were covered with Teflon sheets and capped with plastic end caps. A sample label that included a unique sample identification number, the sample depth, the time, and the date when the sample collected was attached to each brass liner. Samples to be delivered to the laboratory for chemical analysis were sealed in zip-lock plastic bags and placed in a cooler with ice for temporary storage and transport to the laboratory. Chain-of-Custody forms were initiated in the field and included with the samples. Chain-of-Custody Forms are included in Appendix D.

All downhole pieces of the soil boring and sampling equipment were decontaminated prior to their use and between sample locations. Between sampling intervals, the soil sampling tool and brass sample liners were cleaned in an Alconox solution, then rinsed in potable and distilled water. The rinse water generated during decontamination was contained on-site.

5.1.3. Soil Gas Survey

Soil probe installation and soil gas sample collection on 1 and 2 December 1997 was performed by Interphase. EKI observed soil boring installation and soil gas collection procedures and documented the work. The soil gas survey was performed in accordance with RWQCB guidelines for active soil gas investigations under the Well Investigation Program, dated February 1997. Sample analyses included the RWQCB's Primary Target Compounds list of 23 VOCs. Interphase procedures for soil gas sample collection are described in the Interphase Soil Gas Survey Report in Appendix C.

Thirty-seven shallow soil borings (SG1 through SG37) were completed for collection of soil gas samples (Figure 3). Soil gas sampling locations were situated in positions surrounding suspected source areas in the central and southerly portions of the building near the location of the clarifier, the former anodizing area, the former furnace pit and several suspected underground structures. Additional soil gas sampling locations were positioned near the boundaries of the Subject Property and areas outside the former manufacturing building. Soil gas samples were collected from approximately 5 ft bgs, except at three locations (SG29 through SG31) where refusal was encountered at 2 to 3 ft bgs.

Soil borings for soil gas sample collection were completed using an Interphase van equipped with a Soil probe. The soil probe utilized a 2-feet long by 1.5-inch outer diameter soil gas sampler attached to 1.5-inch outer diameter probe sections. No drill cuttings were generated during the soil gas survey. Interphase soil gas sample collection

methods and sampling apparatus are described in the Interphase Soil Gas Survey Report in Appendix C.

All downhole pieces of the soil boring and sampling equipment were decontaminated prior to their use and between sample locations and distinct sampling depths. Between sampling intervals, the soil probes were cleaned in an Alconox solution, then rinsed in potable and distilled water. The rinse water generated during decontamination was contained on-site in a DOT-approved 55-gallon drum for later disposal.

5.1.4. Deep Soil Boring Investigation

Additional soil coring and sampling was performed on 2 and 3 December 1997 by West Hazmat. EKI performed lithologic logging and soil sample selection for chemical analyses and geotechnical testing. Soil sample handling and soil lithologic characterization was performed in accordance with procedures described in Section 5.1.2. Boring logs are provided in Appendix B.

Five soil borings (B15 through B19) were completed as part of the December 1997 soil investigation (Figure 3. Three soil borings (B15 through B17) were located at positions at a lateral distance of approximately 50 feet surrounding the clarifier. Soil borings B18 and B19 were positioned at locations adjacent to the clarifier.

Soil samples retained during the December 1997 soil investigation were collected from several depth intervals. Soil boring B15, situated to the northwest of the clarifier, was completed to approximately 52.5 ft bgs using continuous core sampling with a Soil probe. The remaining soil borings were installed using a hollow-stem auger. Soil boring B16, situated to the south of the clarifier, was completed to approximately 51.5 ft bgs. Soil samples were collected at approximately 5-feet intervals from at location B16. Soil boring B17, located to the southeast of the clarifier, was completed to approximately 62.5 ft bgs.

After advancing soil boring B17 to total depth at 62.5 ft bgs, West Hazmat lowered a water level indicator through the auger casing. The groundwater surface was present at a depth of approximately 56.9 ft bgs. Soil samples were collected at approximately 2.5-feet intervals at location B17. Soil borings B18 and B19 were completed to approximately 46.5 ft bgs. Soil samples were collected at approximately 5-feet intervals at locations B18 and B19.

Soil borings were completed using a West Hazmat track-drive limited access rig ("LAR"). The LAR was equipped with a soil sampling probe and a hollow-stem auger. The Soil probe utilized a 2-feet long by 2-inch outer diameter soil sampler and 2-inch outer diameter probe sections. Drill cuttings generated with the use of the Soil probe were placed into a DOT-approved drum already present on-site. Hollow-stem auger drilling was completed using 8.25-inch outer diameter augers. Soil sample collection during auger drilling was accomplished using a California-modified, 2-feet long by 2-inch outer diameter soil sampler. Soil cuttings generated using the hollow-stem auger method were placed in DOT-approved 55 gallon drums for later disposal.

All downhole pieces of the soil boring and sampling equipment were decontaminated prior to their use and between sample locations. Between sampling intervals, the soil probes or auger casings were steamcleaned using a West Hazmat mobile decontamination trailer. Soil sampling tools and brass sample liners were cleaned in an Alconox solution, then rinsed in potable and distilled water. The rinse water generated during decontamination was contained in DOT-approved, 55-gallon drums for later disposal.

5.2. Summary of Soil Gas Survey Results

5.2.1. Analytical Results for Soil Gas Survey

Soil gas samples were analyzed by Interphase in a mobile laboratory situated inside the Interphase van. Soil gas samples were analyzed using gas chromatographic techniques. For a complete description of analytical methods and instrumentation used for the soil gas survey, please refer to the Interphase Soil Gas Survey Report in Appendix C.

The analytical results for soil gas samples are summarized in Table 1 and graphically on Figures 4 through 6. TCE, PCE, 1,1,1-TCA, chloroform, dichlorofluoromethane ("Freon-12") and trichlorofluoromethane ("Freon-11") were detected in soil gas samples. TCE and PCE were detected in most soil gas samples analyzed. 1,1,1-TCA was also detected at low concentrations in approximately half of the soil gas samples.

Concentrations of TCE detected in samples of shallow soil gas ranged from 0.13 ug/L to 25 ug/L. As shown on Figure 4, the highest concentrations of TCE were detected in samples of soil gas collected in the southeast corner of the Subject Property. The highest soil gas detection of TCE was from the sample collected from location SG36, located at the boundary of the Subject Property (Figure 3). Soil gas samples collected from points immediately surrounding the clarifier were found to contain TCE at concentrations ranging from 3.9 ug/L at location SG3 to 13 ug/L at location SG10.

Concentrations of PCE detected in samples of shallow soil gas ranged from 0.021 ug/L to 28 ug/L. As shown on Figure 5, the highest concentrations of PCE were detected samples of soil gas collected in the southeast corner of the Subject Property. The highest soil gas detection of PCE was from the sample collected from location SG10, located approximately 10 feet northeast of the anodizing area trench (Figure 3). Soil gas samples collected from points in the clarifier area were found to contain PCE at concentrations ranging from 1.6 ug/L at location SG3 to 28 ug/L at location SG10 (Figure 3).

Concentrations of 1,1,1-TCA were detected in approximately half of the soil gas samples collected. Concentrations of 1,1,1-TCA detected in samples of soil gas ranged from 0.013 ug/L at location SG6 to 0.89 ug/L at location SG22, located adjacent to the furnace pit area. As shown on Figure 6, the highest concentrations of 1,1,1-TCA in soil gas appear to be centered in the southeast corner of the Subject Property.

Chloroform, dichlorofluoromethane ("Freon-12") and trichlorofluoromethane ("Freon-11") were also detected at low concentrations in several soil gas samples. Chloroform was detected at concentrations ranging from 0.038 ug/L to 0.058 ug/L in soil gas samples from locations SG1, SG9, SG10, SG14, SG22 and SG36 (Figure 3). Freon-11 was detected in soil gas samples from locations SG22 and SG33 at concentrations of 0.010 ug/L and 0.032 ug/L, respectively. Freon-12 was detected at a concentration of 1.2 ug/L in soil gas at location SG33.

Interphase collected a duplicate sample from location SG23 for off-site compound confirmation analysis by EPA Method TO-14 at an independent laboratory. This sample was analyzed by Environmental Analytical Service, Inc. ("EAS") of San Luis Obispo, California. Results of the duplicate sample analysis by EAS are discussed below.

5.2.2. Quality Assurance/Quality Control for Soil Gas Survey

Quality Assurance/Quality Control ("QA/QC") for the Soil Gas Survey is discussed in detail in the Interphase Soil Gas Survey Report in Appendix C. For the survey, Interphase collected a system blank and ambient air sample prior to sample collection each day. As discussed above, one duplicate sample was collected and analyzed at an independent laboratory. Additional QA/QC procedures included a purge volume versus analyte concentration test at the first soil gas sampling location and mid-point calibration checks. The percent relative deviation of the mid-point calibration checks were within WIP QA/QC guidelines.

The compound confirmation sample analyzed by EAS confirmed the compounds detected by Interphase. In addition, EAS detected methylene chloride, styrene, toluene and xylenes in the sample. However, the additional compounds detected by EAS were detected at concentrations which are near or below Interphase's reporting limits for these compounds.

5.3. Summary of Soil Sampling Results

5.3.1. Analytical Results for Soil Sampling

The analytical results for soil samples are summarized in Table 2, 3, 4, and 5. Concentrations of PCE and TCE detected in soil are also summarized on Figures 7 an 8. Laboratory analysis reports with Chain-of-Custody Forms are attached in Appendix D.

Soil samples collected during the 28 October 1997 soil investigation were analyzed by Orange Coast Analytical, Inc. ("Orange Coast") of Tustin, California for pH by EPA Method 9045, TEPH by EPA Method 8015 modified, CCR-Metals, and VOCs by EPA Methods 8240 and 8010. Soil samples collected during the 2 and 3 December 1997 soil investigation were analyzed by Orange Coast for VOCs using EPA Method 8010.

Nine soil samples collected from locations adjacent to the clarifier and former process areas were analyzed for pH. The analytical results for these analyses indicate that soil pH values ranged from 6.3 to 8.8. The results of pH analyses are summarized in Table 3.

Of ten soil samples analyzed for TEPH, none were found to contain TEPH above method detection limits. See Table 4 for a summary of these analyses.

Fourteen soil samples were analyzed for CCR-Metals. One soil sample was found to contain hexavalent chromium at a concentration of 0.88 milligrams per kilogram ("mg/kg"). However, no other soil samples had detectable hexavalent chromium. Metals concentrations appeared to be within acceptable ranges and indicative of indigenous concentrations in soil. Results of metals analyses are summarized in Table 5.

TCE and PCE were the only VOCs were detected in samples of soil collected during the October and December 1997 soil boring investigations. TCE and PCE were detected at maximum concentrations of 270 mg/kg and 140 mg/kg in one soil sample (B4-20.5) collected from approximately 20 feet below ground surface ("ft bgs") beneath the clarifier. At surrounding sampling locations, VOCs concentrations in soil samples typically ranged from 0.003 mg/kg to 0.13 mg/kg. Results of VOC analyses are summarized in Table 5 and in Figures 7 and 8.

Analytical results for soil samples collected during the December 1997 soil investigation indicate that TCE and PCE were detected in deep vadose zone soil to a depth of at least 53.5 ft bgs. Soil samples collected from each of the five deep soil borings (B15 through B19) at a depth of approximately 46 ft bgs had detected concentrations of TCE ranging from 1.3 mg/kg to 8.7 mg/kg. Concentrations of PCE detected in soil collected at 46 ft bgs were significantly lower, ranging from non-detect to 0.18 mg/kg at B18 and B19.

5.3.2. Quality Assurance/Quality Control for Soil Chemical Analyses

Standard laboratory QA/QC procedures used for the project included method blanks and matrix spikes/matrix spike duplicates. Percent recovery matrix spikes and matrix spike duplicates was within acceptable ranges. No detections were found in method blanks analyzed for the project. QA/QC results are provided with the laboratory reports in Appendix D.

5.3.3. Soil Geotechnical Testing Results

Twelve soil samples were selected for geotechnical analyses. These analyses were performed to provide data for a possible future fate and transport modeling or evaluation and design of remedial alternatives. The soil samples selected for geotechnical testing were chosen from depths and lithologies considered generally representative of the various geologic materials present in the vadose zone. Geotechnical analyses included total organic carbon by the Walkley-Black method, moisture content by ASTM Method D2216, dry density by ASTM Method D2937, and effective permeability and air

conductivity by API Method RP40. See Table 3 for results of geotechnical testing. Laboratory data sheets and Chain-of-Custody forms are attached in Appendix D.

As shown in Table 6, moisture content ranged from 7 to 39.9 percent and total organic carbon ranged from 0.10 to 0.96 percent. Of twelve samples analyzed for air conductivity and effective permeability, six samples did not conduct air. The remaining soil samples had effective permeabilities ranging from 0.4 millidarcies to 1246.4 millidarcies. Comparable air conductivity results for these samples ranged from 5.2×10^{-7} to 8.2×10^{-5} . The sample with the highest air permeability corresponds to a thin bed of well-graded fine to medium grained sand at a depth of 36 ft bgs from soil boring B16. Only one soil sample (B16-16.5) collected from the shallow vadose zone was found to have measurable air conductivity properties. The remaining samples of soil that exhibited measurable air flow were collected from depths of 36 to 46 ft bgs.

5.3.4. Characterization of Vadose Zone Soils

Soil present in the vadose zone beneath the Subject Property are predominantly silts with variable clay and sand content. However, clay and sandy soils are also present. The vadose zone is characterized by interbedded clayey, silty and sandy beds which appear to be lenticular but largely continuous in structure over the investigation area. These sediments are probably associated with the Downy Plain alluvium as discussed in Section 4. Due to the nature of deposition of these sediments, stream channel and overbank splay deposits associated with the Quaternary fluctuations of Los Angeles River, it is possible that the structure and presence of various lithologies in the vadose zone is variable laterally as well as vertically in the immediate area of the Subject Property.

Several recognizable lithologies were observed to be present in all five borings. In particular, a moderately to highly plastic clay unit of variable thickness ranging from approximately 1 to 5 feet was observed at depths of approximately 24 to 26 ft bgs in all five deep soil borings (borings B15 to B19). This unit appears to be thinner in the vicinity of soil borings B18 and B19. The clay unit is overlain and underlain by silty materials. A pronounced sandy unit was observed in all five borings at a depth of approximately 34 to 36 ft bgs. This unit also varies in thickness, ranging from approximately 1 to 4 feet thick. See Figures 9 and 10 for an illustration of vadose lithology at the subject property. Boring logs are attached in Appendix B.

6. FINDINGS

6.1. Chemicals of Concern

EKI's investigations included sampling and analysis of soil gas for VOCs and soil for VOCs, metals, pH and TEPH. On the basis of the analyses completed it appears that VOCs, specifically TCE and PCE, are present in the vadose soil at the Subject Property at concentrations which warrant further investigation. Other chemicals do not appear to warrant further investigation.

6.2 Potential Source Areas

The clarifier and former anodizing operation area appears to be the location of past releases of TCE and PCE. The highest VOC concentrations were detected in the general area of the clarifier and former anodizing operations. The soil sample (B4-20.5) with the highest TCE and PCE concentrations was collected beneath the clarifier. Based on sampling results, no other significant potential source area was identified.

6.3 Distribution of TCE and PCE in Vadose Soil

Concentrations of TCE and PCE detected in shallow soil were relatively low compared to concentrations of these chemicals detected in deeper soil samples. Both TCE and PCE were detected in most of the shallow soil samples collected in the area of the clarifier and former anodizing operations. The highest concentrations of TCE and PCE detected in soil samples from 11 ft bgs or less were 0.11 mg/kg and 0.40 mg/kg, respectively, both in sample B18-11 next to the clarifier.

The highest concentrations of TCE and PCE detected at the site were in deep soil samples (between 20 ft bgs to 46 ft bgs) from borings B4, B18, and B19 next to the clarifier. The highest concentration of each was detected in soil sample B4-20.5 beneath the clarifier with TCE at 270 mg/kg and PCE at 140 mg/kg. Concentrations of TCE were greater than 1 mg/kg in most of the soil samples analyzed between 20 ft bgs and 46 ft bgs at the clarifier (Figure 10). Concentrations of PCE were much lower in the same soil samples. None of the soil collected from below sample B4-20.5 had concentrations of PCE greater than 0.66 mg/kg.

There appears to have been lateral migration of TCE, and to a lesser extent also PCE, from the area of the clarifier. The deepest soil sample from each of the three perimeter soil borings B15, B16, and B17 (each located approximately 50 feet from the clarifier) was found to have a concentration of TCE greater than 1 mg/kg (B15-44.5, B16-53.5, and B17-46). PCE, however, was not detected in the deepest samples from the perimeter

borings. An approximation of the lateral distribution of TCE in soil at 20 and 40 ft bgs are shown on Figures 11 and 12, respectively.

The depth to groundwater was found to be approximately 57 ft bgs during these investigations. No groundwater sampling was performed.

6.4 Conclusions

On the basis of the results of investigations conducted to date it appears that further actions are necessary to address the presence of VOCs in the subsurface at the Subject property.

7. REFERENCES

Erler & Kalinowski, Inc. Phase I Environmental Site Assessment of the Jervis B. Webb Properties at 9301 Rayo Avenue and 5030 Firestone Boulevard in South Gate, California. 20 June 1996.

U.S.G.S. South Gate Quadrangle, 7.5 Minute Series., 1964, Photorevised 1981 (USGS, 1964)

Jervis B. Webb Company. Jervis B. Webb of California Shop Site. 25 July 1995. (Webb, 1995)

Fairchild Aerial Photo Collection, Department of Geology, Whittier College. *Historical Aerial Photographs*. 1928, 1932, 1947, 1953, 1957

Continental Aerial Photo, Inc. Historical Aerial Photographs. 1954, 1960, 1970, 1976, 1986, 1992.

Sanborn Mapping and Geographic Information Service. Fire Insurance Maps. 1950, 1966

Fred C. Hart Associates. *Environmental Compliance Assessment*. 30 December 1988. (Hart, 1988)

Bechtel Environmental, Inc. Preliminary Assessment / Site Inspection. 1 September 1994. (Bechtel, 1994)

Vision Environmental, Inc. Air Quality Compliance Audit and Emissions Inventory. June 1995. (Vision, 1995)

Jervis B. Webb Company. *Uniform Hazardous Waste Manifests*. 12 March 1996. (Manifests, 1996)

California Department of Water Resources. Bulletin No. 104: Planned Utilization of the Groundwater Basins of the Coastal Plain of Los Angeles County, Appendix A, Groundwater Geology. June 1961. (DWR, 1961)

Water Replenishment District of Southern California. Annual Survey and Report on Groundwater Replenishment. 1997. (WRD, 1997)

Jervis B. Webb Company. South Gate Plant Layout. 12 January 1967. (Webb, 1967)

Jervis B. Webb Company. Notice of Intent to Comply with General Permit to Discharge Stormwater. 27 July 1995. (Notice of Intent)

EMCON. Progress Report - First Quarter 1995 for the Dial Corporation Facility at 9300 Rayo Avenue, South Gate, California. 18 July 1995. (EMCON, 1995)

TABLE 1
Soil Gas Analytical Results for VOCs
Phase II Soil Investigation Report
5030 Firestone Boulevard, South Gate, California

	Concentration					
Sample Name	PCE	TCE	1,1,1-TCA			
	(ug/L)	(ug/L)	(ug/L)			
SG-1-5	23	9.6	0.5			
SG-2-5	4.7	3.9	0.5			
SG-3-5	1.6	3.9	0.15			
SG-4-5	5.2	8.9	0.13			
SG-5-5	1.6	1.5	0.044			
SG-5-5 (duplicate)	1.7	1.6	0.043			
SG-6-5	0.061	< 0.01	0.013			
SG-7-5	0.075	< 0.01	< 0.01			
SG-8A-5	1.1	2.3	0.46			
SG-8B-5	4.1	4.4	0.65			
SG-8C-5	5.8	4.5	0.59			
SG-9-5	25	11	0.71			
SG-10-5	28	13	0.26			
SG-11-5	0.94	0.47	0.036			
SG-12-5	< 0.01	< 0.01	< 0.01			
SG-13-5	5	7.9	0.18			
SG-14-5	28	8	0.5			
SG-15-5	5.9	4.7	0.2			
SG-16-5	1	0.96	0.046			
SG-17-5	4.2	2.2	0.2			
SG-18-5	0.13	0.074	0.017			
SG-19-5	0.12	< 0.01	< 0.01			
SG-20-5	0.74	0.14	0.082			
SG-21-5	3.7	2.5	0.34			
SG-22-5	25	11	0.89			
SG-23-5	1.3	1.2	0.13			
SG-24-5	0.57	0.33	0.080			
SG-24-5 (duplicate)	0.68	0.34	0.08			
SG-25-5	< 0.01	< 0.01	0.12			
SG-25-5 (duplicate)	< 0.01	< 0.01	0.13			
SG-26-5	< 0.01	< 0.01	0.12			
SG-27-5	< 0.01	< 0.01	0.048			
SG-28-5	< 0.01	< 0.01	< 0.01			
SG-29-2	0.036	0.020	0.020			
SG-30-3	0.028	0.13	< 0.01			
SG-31-3	0.021	< 0.01	< 0.01			
SG-32-5	< 0.01	< 0.01	<0.01			
SG-33-5	3.2	0.41	0.18			
SG-34-5	6.3	2.4	0.26			
SG-35-5	1.9	3.6	0.12			
SG-36-5	3.0	25	0.24			
SG-37-5	2.0	12	0.18			

TABLE 1

Soil Gas Analytical Results for VOCs

<u>Phase II Soil Investigation Report</u> 5030 Firestone Boulevard, South Gate, California

Notes:

1. Abbreviations: VOCs = volatile organic compounds

PCE = tetrachloroethene TCE = trichloroethene

1,1,1-TCA = 1,1,1-trichloroethane ug/L = micrograms per liter

2. Analyses performed by Interphase, Inc. in an on-site mobile laboratory.

3. Samples collected on 1 and 2 December 1997.

4. Sample depth indicated in sample name. Depth indicated by last number separated by a hyphen in each sample description (i.e. sample SG-5-5 collected at 5 feet below ground surface). Soil gas collected at 5 feet below ground surface except at locations SG-29, SG-30 and SG-31.

5. Additional compunds detected were as follows:

Chloroform: SG-1-5 = 0.055 ug/L; SG=9=5 = 0.056 ug/L; SG-10-5 = 0.053 ug/L; SG-14-5 = 0.038 ug/L; SG-22-5 = 0.040 ug/L; SG-36-5 = 0.058 ug/L Trichlorofluoromethane (F-11): SG-22-5 = 0.010 ug/L; SG-33-5 = 0.032 ug/L

Dichlorodifluoromethane (F-12): SG-33-5 = 1.2 ug/L

6. Analyses performed in accordance with Los Angeles Regional Water Quality Control Board guidelines for active soil gas sampling.

TABLE 2

Soil Analytical Results for pH

Phase II Soil Investigation Report

5030 Firestone Boulevard, South Gate, California

Sample Number	Depth (ft. bgs)	рН
B1-5.5	5.5	7.9
B4-6	6	8.3
B5-1	1	7.7 ·
B5-6	6	8.0
B6-6	6	6.3
B7-2	2	7.6
B7-6	6	6.7
B8-2	2	8.6
B8-6	6	8.8

Notes:

1. Analyses performed by Orange Coast Analytical, Inc.using EPA Method 9045

TABLE 3

Soil Analytical Results for TEPH

EKI 961025.02

5030 Firestone Boulevard, South Gate, California

Sample Number	Depth (ft. bgs)	TEPH (mg/kg)
B1-5.5	5.5	<0.5
B2-5.5	5.5	<0.5
B3-6	6	< 0.5
B4-10.5	10.5	<0.5
B5-1	1	<0.5
B7-2	6	<0.5
B8-2	6	< 0.5
B9-5.5	5.5	<0.5
B10-6	6	<0.5
B11-6	6	<0.5

Notes:

1. Abbreviations: TEPH = Total Extractable Petroleum Hydrocarbons

mg/kg = milligrams per kilogram

2. Analyses performed by Orange Coast Analytical, Inc.using EPM method 8015 modified

5030 Firestone Boulevard, South Gate, California Soil Analytical Results for Metals Phase II Soil Investigation Report TABLE 4

1	Т	Т	Т	T		Т	Т	7	\top	Т	Т	Т			Τ-	т-	_
oniz	Z	90	87	2	35	29	50	3 2	2 6	9	3	3	2	29	28	12	2,5
muibsns	١	1,5	2	24	20	16	25	1	7 5	- -	7 5		2	16	17	0 %	3 2
muilled	L	4		0.0	~5.0	05.	0.87	ÿ	?! (2 9	9 9	0.0	9	65.0	<5.0	0 50	0 5
ilver	S	=	-	=	1 0	0.1	1.0	- -	; =			7	-	-0.0	0.1	9	9
muinələ	S	-			5. - -	0.1.	0.1	+	_			2 3	2.	0.1	⊢	0.17	+
Vickel	1	6.5	7,7	-i	6.3	5.3	14	5.4	2	: 5	7.7	نا د	4.0	5	5.6	3	<u>_</u>
Molybdenum	Į.			C.0	- 0.5	÷ 0.5	< 0.5	0.5	16	- '.' c	7		(:.)	<0.5	<0.5	<0.5	
	I	100	+-	_	_	_	_	0.0	+=	:-	+=	_ _	_+	_		 _	<0.0>
рвэс	[(S	Ē	3		_	1.0	_	 	=		_	_	_	0		0	0.1
Copper	/om)	0	+	3 ;		=	13	5.1	2	+-	+-	7:5	+	-1	8.5	3.4	6.4
		4.5	2 4	2	7.5	3.7	8.3	3.9	4	5	2.4	! ~	-	4.ن د	4	2.3	3.6
stoT muimond)		15	42	1 6	2	<u>-</u>	30	12	2	7	2		1;	7	16	7.3	13
VI muimoтd)		5 0	5	, ,		0.88	< 0.5	~0.5	0.5	5.0	9	y 0		0.0	<0.5	<0.5	<0.5
muimibaO		0.	=	: -	+			0.1	=	1_	=	=	┿	+		_	1.0.
Beryllium			t	+	_	_	9.	0.1	<u>-</u>	3	- -	ļ	: ;	-	0		0.1
Barium		49	┢	\dagger		\neg		57	<u>S</u> 6	77	19	9	3 5	\dagger	1	\dashv	53
Arsenic		0.1	0,1	6	2 3	=	0	1 0	0	0.1	0	5		2	9. V	0.1	0.1
VnomitnA		0.5	5.0	0 ''	2 3	0.0	<u> </u>	0,	0 5	0.6	0.8	5.0	17 17	2.	9	0.5	-5.0
Depth	(ft. bgs)	5.5	11	9	T	1	10	-	9	9	2	9	2	7 (7		9
Sample Number		B1-5.5	B1-11	B4-6	BA-10 5	D4-10.3	D4-10	B5-1	B5-6	B6-6	B7-2	B7-6	B8-2	Do 6	D&-0	B10-6	B11-6
	Antimony Arsenic Barium Cadimium Chromium IV Copper Cobalt Copper Copalt Copper Copper Copper Copper Copper Copalt Copper	(ft. bgs) Arsenic Barium Beryllium Cadimium IV Chromium Tota Chobalt	Depth Arsenic Antimony Arsenic Barium Cadimium Tota Chromium IV Copper Chromium Tota Chromium Tota Chromium Tota Cobalt Cobalt Copper Selenium Mercury Molybdenum Mickel Mickel Selenium Copper Chromium Tota Molybdenum Mickel Micke	Thallium Copper Chromium IV Chromium IV	Chromium Tota Cadimium Cadimium Chromium Tota Chromi	Chromium Tota Cadimium Chromium Tota C	Chromium Tota Cadimium Chromium Tota Cadimium Chromium Tota Chromi	Cadimium Cadimium	Cadimium Cadimium	Cadimium Cadimium	Chromium Tota Copper Chromium Tota Chr	Chromium Tota Copper Chromium Tota	Copper C	Chromium TV Chromium TV	Coppet	Coppet	Coppet

- mg/kg = milligrams per kilogram 1. Abbreviations:
- 2. Analyses performed by Orange Coast Analytical, Inc. using EPA Methods 6010 for all metals except Method 7196 was used for Chromium (IV) and Method 7471 was used for Mercury.

 3. Samples from borings B1 through B13 collected on 28 October 1997.

TABLE 5

Soil Analytical Results for VOCs

Phase II Soil Investigation Report

5030 Firestone Boulevard, South Gate, California

	<u> </u>	Concentration				
Sample Number	Depth	PCE	TCE			
	(ft. bgs)	(mg/kg)	(mg/kg)			
B1-5.5	5.5	0.074	0.024			
B1-11	11	0.13	0.027			
B1-20	20	0.035	0.04			
B2-5.5	5.5	0.018	0.0073			
B2-10.5	10.5	0.045	<0.015			
B3-6	6	0.042	0.01			
B3-11	11	0.12	0.034			
B4-6	6	0.076	0.021			
B4-16	16	2.2	0.092			
B4-20.5	20.5	140	270			
B5-6	6	0.025	0.0053			
B5-10.5	10.5	0.065	0.19			
B6-6	6	0.13	0.031			
B6-10.5	10.5	0.019	0.025			
B7-6	6	0.055	0.019			
B7-11	11	< 0.015	< 0.015			
B8-6	6	0.0029	< 0.0025			
B8-11	11	0.041	0.05			
B9-5.5	5.5	0.0036	< 0.0025			
B9-10.5	10.5	0.022	0.041			
B10-6	6	0.027	0.0064			
B10-11	11	< 0.015	0.036			
B11-6	6	0.061	0.016			
B11-11	11	< 0.015	0.035			
B12-6	6	< 0.0025	< 0.0025			
B13-6	6	< 0.0025	< 0.0025			
B15-10	10	r0 005	< 0.005			
B15-16	16	< 0.005	< 0.005			
B15-20.5	20.5	< 0.005	< 0.005			
B15-26.5	26.5	0.054	0.38			
B15-31	31	0.041	0.52			
B15-35.5	35.5	0.026	0.14			
B15-40	40	< 0.005	1.2			
B15-44.5	44.5	<0.005	1.3			
B16-6	6	<0.005	<0.005			
B16-11	11	< 0.005	<0.005			
B16-16	16	0.027	< 0.005			
B16-21	21	0.041	< 0.005			
B16-26	26	0.047	< 0.005			
B16-31	31	0.027	<0.005			
B16-35.5	35.5	<0.005	<0.005			
B16-41	41	<0.005	0.41			
B16-46	46	< .0.005	0.39			

TABLE 5 Soil Analytical Results for VOCs Phase II Soil Investigation Report 5030 Firestone Boulevard, South Gate, California

		Concentration				
Sample Number	Depth	PCE	TCE			
	(ft. bgs)	(mg/kg)	(mg/kg)			
B16-51	51	< 0.005	1.3			
B17-6	6	< 0.005	< 0.005			
B17-11	11	< 0.005	< 0.005			
B17-16	16	< 0.005	< 0.005			
B17-21	21	< 0.005	< 0.005			
B17-26	26	< 0.005	0.048			
B17-31.5	31.5	< 0.005	0.056			
B17-36	36	< 0.005	1.4			
B17-41	41	< 0.005	1.2			
B17-46	46	< 0.005	1.6			
B17-53.5	53.5	< 0.005	1.4			
B18-11	11	0.4	0.11			
B18-16	16	0.37	0.61			
B18-21	21	0.66	16			
B18-27	27	0.093	0.75			
B18-31	31	0.14	2			
B18-36	36	< 0.005	0.056			
B18-41	41	0.091	2.3			
B18-46	46	0.18	8.7			
B19-16	16	0.42	0.2			
B19-21	21	0.28	1.8			
B19-26	26	0.28	1.5			
B19-31	31	0.25	1.2			
B19-36.5	36.5	< 0.005	0.11			
B19-41	41	0.16	4			
B19-46	46	0.18	4.3			

Notes:

1. Abbreviations:

VOCs = volatile organic compounds PCE = tetrachloroethene

TCE = trichloroethene

mg/kg = milligrams per kilogram

- 2. Analyses performed by Orange Coast Analytical, Inc. usinf EPA methods 8240 and 8010
- 3. Samples from borings B1 through B13 collected on 28 October 1997. Samples from borings B15 through B19 collected on 1 December and 2 December 1997.

TABLE 6

Soil Geotechnical Testing Results

Phase II Soil Investigation Report

5030 Firestone Boulevard, South Gate, California

		Moisture Content	Dry Density	Total Carbon	Effective Permeability	Air Conductivity
Sample Number	Depth	ASTM	ASTM	Walkley-	, , , , , , , , , , , , , , , , , , , ,	
		D2216	D2937	Black	API RP40	API RP40
	(ft. bgs)	(%)	(PCF)	(%)	(millidarcy)	(cm/sec)
B15-15	15	22.3	102.1	0.88	N/A	NO FLOW
B15-31.5	31.5	35.8	82.8	0.96	N/A	NO FLOW
B-15-36	36	10.9	112.8	ND	452.7	3.0E-005
B-15-47.5	47.5	24.1	95.9	0.34	N/A	NO FLOW
B16-16.5	16.5	26.6	90.3	0.18	0.7	9.4E-008
B16-26.5	26.5	39.9	85.4	1.07	N/A	NO FLOW
B16-36	36	7.0	101.6	0.10	1246.4	8.2E-05
B16-46.5	46.5	25.3	105.8	0.61	0.4	5.2E-007
B17-16.5	16.5	23.4	108.9	0.61	N/A	NO FLOW
B17-26.5	26.5	38.1	89.3	1.11	N/A	NO FLOW
B17-36.5	36.5	26.1	99.4	0.57	0.6	9.2E-008
B17-46.5	46.5	21.5	108.0	0.58	1.1	1.4E-007

Notes:

1) Abbreviations:

ND = not detectable

cm/sec = centimeters per second

PCF = pounds per cubic foot

N/A = not analyzed

- 2. Analyses performed by Environmental Geotechnology Laboratory, Inc.
- 3. Samples from borings collected from borings B15 through B19 collected on 1 December and 2 December 1997.

0 2,000 4,000 (Approximate Scale in Feet)

Source: U.S.G.S 7.5 Minute Series "South Gate" Quadrangle, 1964, photorevised 1981.

Erler & Kalinowski, Inc.

Site Location Map

Jervis B. Webb Company South Gate, California February 1998 EKI 961025.02 Figure 1

N

FIRESTONE BOULEVARD

LEGEND

PROPERTY LINE/BOUNDARY

----- BUILDING

RAILROAD SPUR

---- SEWER (not confirmed)

STORM DRAIN EASEMENT (not confirmed)

Notes:

1. All locations are approximate.

Erler & Kalinowski, Inc.

Subject Property Features 5030 Firestone Boulevard

Jervis B. Webb Company South Gate, CA February 1998 EKI 961025.02 Figure 2

FIRESTONE BOULEVARD

LEGEND

SOIL GAS SAMPLING LOCATION SOIL GAS SAMPLING LOCATION

PROPERTY LINE/BOUNDARY

BUILDING

RAILROAD SPUR

Erler & Kalinowski, inc.

Locations of Soil and Soil Gas Sampling

Jervis B. Webb Company South Gate, CÁ February 1998 EKI 961025.02

Figure 3

Notes:

1. All locations are approximate.

LEGEND

▲ SOIL GAS SAMPLING LOCATION

- - PROPERTY LINE/BOUNDARY

- BUILDING

RAILROAD SPUR

Erier & Kalinowski, Inc.

Concentrations of TCE Detected in Shallow Soil Gas

Notes:

- 1. All locations are approximate.
- 2. Soil gas concentration contours in units of micrograms per liter by volume in air.

LEGEND

SOIL GAS SAMPLING LOCATION
PROPERTY LINE/BOUNDARY

BUILDING
RAILROAD SPUR

Erier & Kalinowski, Inc.

Concentrations of PCE Detected in Shallow Soil Gas

Notes:

- 1. All locations are approximate.
- 2. Soil gas concentration contours in units of micrograms per liter by volume in air.

LEGEND

SOIL GAS SAMPLING LOCATION
PROPERTY LINE/BOUNDARY

BUILDING

RAILROAD SPUR

Erier & Kalinowski, Inc.

Concentrations of 1,1,1—TCA Detected in Shallow Soil Gas

Notes:

- 1. All locations are approximate.
- 2. Soil gas concentration contours in units of micrograms per liter by volume in air.

B10 SUMP

B15

MYCOTTING AREA

B16

B6

R4

₽811

FURNACE PIT,

TCE = 0.021

TCE = 0.092

TCE = 0.11

TCE = 0.61

TCE = 0.75

TCE = 2.0

TCE = 2.3

TCE = 0.056

TCE = 16

B8

FB1 B19 B18

-B3

CLARIFIER

TRENCH

B17

†B2

ROX CONFRED BAY

B16-6 9.5 feet TCE = ND B16-11 16 feet TCE = ND

B16-16 20.5 feet TCE = ND B16-21 26.5 feet TCE = ND B16-26 31 feet TCE = ND

B16-31 35.5 feet TCE = ND

B16-35.5 40 feet | TCE = ND

B16-41 44.5 feet TCE = 0.41 B16-46 46 feet TCE = 0.39 B16-51 51 feet TCE = 1.3

LEGEND

0

LOCATION OF SOIL BORING PROPERTY LINE/BOUNDARY BUILDING

50

(Approximate Scale\in Feet)

RAILROAD SPUR

B13-6 6 feet TCE = ND

TCE - ND

TCE = 0.006

TCE = 0.036

B12-6 6 feet

B10-6 6 feet B10-11 11 feet

Notes:

- 1. All locations are approximate.
- 2. Soil boring B4 installed at approximately 15 degrees angle from vertical in the direction of the base of the clarifier. Boring terminated beneath the clarifier.
- 3. See laboratory report for results of additional analyses.
- 4. Concentrations of volatile organic compounds ("VOCs") reported in units of micrograms per kilogram. Concentrations shown in units of milligrams per kilogram ("mg/kg"). "ND" indicates non-detection above method detection limits. Some concentrations rounded to nearest 0.001 mg/kg.

B14 (Background Soil Boring — not onalyzed)

B13

SHIPPING AREA

6 feet

86-6 6 feet

B11-6 6 feet B11-11 11 feet

B5-10.5 10.5 feet TCE = 0.19

B6-10.5 10.5 feet TCE = 0.025

TCE = 0.005

TCE = 0.031

TCE = 0.016

TCE = 0.035

B4-6 6 feet B4-16 16 feet

84-20.5 20.5 feet TCE = 270 B19-16 16 feet TCE = 0.20

B19-21 21 feet TCE = 1.8

B19-26 26 feet TCE = 1.5

B19-31 31 feet TCE = 1.2

B19-36.5 36.5 feet TCE = 0.11 B19-41 41 feet TCE = 4.0

B19-46 46 feet TCE = 4.3

27 feet

B18-46 | 46 feet | TCE = 8.7

B18-11 11 feet B18-16 16 feet

B18-21 21 feet

B18-31 31 feet

B18-36 36 feet B18-41 41 feet

B18-27

Erler & Kalinowski,

BUILDING

Concentrations of TCE Detected in Soil

LEGEND

LOCATION OF SOIL BORING
PROPERTY LINE/BOUNDARY
BUILDING
RAILROAD SPUR

Notes:

- 1. All locations are approximate.
- Soil boring B4 installed at approximately 15 degrees angle from vertical in the direction of the base of the clarifier. Boring terminated beneath the clarifier.
- 3. See laboratory report for results of additional analyses.
- Concentrations of volatile organic compounds ("VOCs")
 reported in units of micrograms per kilogram. Concentrations
 shown in units of milligrams per kilogram ("mg/kg"). "ND" indicates
 non-detection above method detection limits. Some concentrations
 rounded to nearest 0.001 mg/kg.

Erler & Kalinowski, Inc.

Concentrations of PCE Detected in Soil

LOCATION OF SOIL BORING
(Not all borings sampled to 20 feet)
PROPERTY LINE/BOUNDARY
BUILDING
RAILROAD SPUR

Notes:

- 1. All locations are approximate.
- Soil boring 84 installed at approximately 15 degrees angle from vertical in the direction of the base of the clarifier. The detected 270 mg/kg was in a sample from below the clarifier at 20 feet below ground surface.
- 3. See laboratory report for results of additional analyses.
- Concentrations of volatile organic compounds ("VOCs") shown in units of milligrams per kilogram ("mg/kg"). "ND" indicates non-detection above method detection limits. Some concentrations rounded to nearest 0.001 mg/kg.

Erler & Kalinowski, inc.

Approximate Lateral Extent of TCE Detected in Soil at Approximately 20 Feet Below Ground Surface

Jervis B. Webb Company South Gate, CA February 1998 EKI 961025.02

Figure 11

(Not all borings sampled to 20 feet)

PROPERTY LINE/BOUNDARY

BUILDING

RAILROAD SPUR

Notes:

- 1. All locations are approximate.
- 2. Soil boring 84 installed at approximately 15 degrees angle from vertical in the direction of the base of the clarifler.
- 3. See laboratory report for results of additional analyses.
- 4. Concentrations of volatile organic compounds ("VOCs") shown in units of miligrams per kilogram ("mg/kg"). "ND" indicates non-detection above method detection limits. Some concentrations rounded to negrest 0.001 mg/kg.

Erler & Kalinowski, inc.

Approximate Lateral Extent of TCE Detected in Soil at Approximately 40 Feet Below Ground Surface

Jervis B. Webb Company South Gate, CÁ February 1998 EKI 961025.02

Figure 12

Appendix A

Site Background Information

SUMMARY OF SITE BACKGROUND INFORMATION

This attachment provides a summary of site background information from EKI's review of documents provided by Webb, historical aerial photographs, and regulatory agency files for 5030 Firestone Boulevard in South Gate ("Subject Property").

A.1 Description of Current Site Conditions

The Subject Property is not currently occupied except that the current owner/operator of the business at 9301 Rayo Avenue property uses portions of the Subject Property for storage of containerized raw materials and equipment. The locations of key site features are shown on Figure 2.

A.1.1 Exterior Areas

The areas along the northern and eastern sides of the Subject Property are covered with asphalt except for a vegetated area at the north end of the building. The area along the west side of the building is asphalt covered and an out-of-service railroad spur passes near the building. A fence bounds the property on the west, north, and east sides. The area south of the building is asphalt and concrete covered with open access to the Rayo Property. Unpaved areas are present beyond the southern boundary of the property. During EKI's initial site inspection, the areas outside of the building were generally clear of debris. Some minor refuse and automobile tires are present on the Subject Property. No significant waste materials have been observed during EKI's subsequent visits to the Subject Property.

Just outside an inset corner on the southeast side of the building, under an overhanging roof, is a three stage clarifier approximately 4-feet wide by 8-feet long in area (see Figure 2). Based on a detail shown on the Plumbing Plan, the clarifier is approximately 4-feet deep. The structure is set in a concrete pad that rises approximately six inches above the surrounding asphalt area. A sample collection box at the northeasterly end of the clarifier was observed to be filled with concrete. The main chambers of the structure were observed to be filled with sand and covered with steel plates. No plumbing for the clarifier was visible at the surface on the outside of the building. Following Blake, this area was later used by Webb for temporary storage of drums of hazardous materials before the drums were transported off-site for disposal. No drums or other materials were present at this location during the walk-through.

During recent investigation activities at the Property, a subcontractor, Cornerstone Environmental Contractors, Inc. of Walnut Creek, California was retained by Webb to remove a portion of the overhanging roof above the clarifier. This activity was required in order to access the clarifier area with a drill rig.

A.1.2 Inside Areas

No raw materials, equipment or waste have been observed by EKI inside the manufacturing building. Refuse, wood scraps and other materials associated with the aging building structure are present in small quantities. Following is a description of features of the building and associated former process and storage areas reportedly used by Blake during their activities at the Property.

As shown on the Plumbing Plan for Blake Rivets' waste discharge permit (City of South Gate Industrial Wastewater Discharge Permit No. 5181), the "anodizing area" is located on the southeast side of the building. An L-shaped floor drainage trench is present along the northeasterly and southeasterly walls bounding the anodizing area (see Figure 2). The trench is approximately 2-inches to 6-inches deep and slopes toward a drain at the southwest end of the trench. The trench drain leads underground to the clarifier on the exterior of the adjacent wall. The trench was observed by EKI to partially be filled with sandy gravel fill. The trench is in a location described on the Plumbing Plan as the "trench for all overflow water" and is indicated to have been 48-inches wide and 6-inches deep. Concrete in the area of the trench was observed to be severely etched. Concrete at other locations in the anodizing area was observed to be broken and/or cracked. EKI observed a 2-inch outer diameter pipe in the anodizing area next to the discharge point to the clarifier. This pipe extends from the southeasterly trench wall toward the ceiling and appears to have been a vent pipe for the clarifier.

Also in the southeast corner of the building, is an area indicated in the waste discharge permit to have had "rinse tanks." Numerous patches were observed by EKI in this area. The Plumbing Plan indicates that former structures in this area may have been associated with the former "trench for all overflow water." During the Phase II investigation, EKI observed that the roof in this area of the building had been constructed with wood braces for supporting a secondary wall that apparently extended down from the roof. This former feature may have been used to section-off the rinse tanks area from the other portions of the building.

Just west of the rinse tanks area is an area noted on Plumbing Plan as having a "concrete pit for furnace and quench tank." A floor drain is indicated to have been in the floor of the pit and the Plumbing Plan shows that it may have discharged to the sanitary sewer, located to the south of the building. No pit was observed in this location during the site walk-through; however, a large rectangular concrete patch was observed in the floor in the area. In the western portion of the building, EKI observed a 2-inch outer diameter pipe extending from the concrete floor toward the ceiling. Based on the location of the pipe, situated in the vicinity of a sewer line shown on the Plumbing Plan, it is apparent that the pipe may be a vent pipe for the sanitary sewer.

The Plumbing Plan identifies the middle portion of the building as the "machine area." Extending from the large bay entrance of the building to the northwest are two rows of machine anchor bolts in the concrete floor. It appears that these anchor bolts were associated with former machining equipment. Some small oil stained concrete areas were

observed by EKI. Electrical conduit for the former machinery was observed to be present in the concrete floor at numerous locations within the building.

In the central portion of the building, EKI observed a recessed portion of the concrete ("sump"). This structure is approximately 2 feet wide by 4 feet long and 6-inches deep. EKI inspected the inside of the structure and did not observe any pipes or other conveyance into or out of the structure. Because the structure was very shallow, it is not likely that the structure was used for liquid storage or conveyance.

The west side of the building is described on the Plumbing Plan as having been used as a wire storage and receiving area. Several concrete patches were observed in the northwestern corner of the building, which is indicated on the Plumbing Plan to have been a former "receiving area." This area was apparently used by Blake for receiving raw materials. Directly south of the receiving area is a general area that was formerly used for "wire storage."

The east side of the building is identified on the Plumbing Plan as having been used for storage and shipping. On the east corner of the building, EKI observed a concrete sump covered by a steel plate. This structure is approximately 2 feet wide by 4 feet long and was observed by EKI to be filled with sand. Concrete patches of approximately the same dimensions were also observed in the vicinity of the covered sump. Based on our inspection of the concrete patches in the area, it is possible that additional below ground structures were previously present at these locations. EKI did not establish the depth of the existing below ground structure or attempt to verify the presence any conveyance piping. This sump is not described on the Plumbing Plan.

The northeast area of the building formerly had plaster and wood interior build-outs that were used for offices, restrooms and a lunch room. These walls no longer exist. Some vinyl floor tile, ceramic floor tile, plumbing and a floor drain were observed by EKI in this area. The Plumbing Plan identifies one small room as a "lab." It is apparent that the floor drain was associated with the restrooms.

A.2 Historical Uses of the Subject Property

EKI has reviewed several documents provided by Webb and additional materials gathered by EKI to obtain historical use information for the Subject Property and surrounding area. Sources used to establish historical use of the Subject Property included historical aerial photographs obtained at Continental Aerial Photo, Inc. in Los Alamitos, California ("Continental") and Fairchild Aerial Photo Collection, Department of Geology, at Whittier College ("Fairchild"). EKI also reviewed historical maps from the Sanborn Mapping and Geographic Information Service ("Sanborn"). A brief discussion of historical use of the Subject Property, beginning with the earliest record reviewed, follows.

In 1928, the Subject Property was vacant. Several dirt roads appeared on the Subject Property and adjacent Rayo Property by 1932; however, there was no development of the

Subject Property through 1947 (Fairchild, 1928, 1932, 1947). By 1950, substantial industrial development was evident at properties adjacent to and in the vicinity of the Subject Property. However, no development of the Subject Property had occurred as of 1950 (Sanborn, 1950). In 1953, the Subject Property was developed with two small buildings, which consisted of separate portions of the current building configuration. The Rayo Property was still undeveloped in 1953 (Fairchild, 1953). In 1954, the Rayo Property was developed with a large manufacturing building (Continental, 1954). By 1957, the two separate buildings on the Subject Property had been joined by a large addition, consisting of the main manufacturing portion of the current structure (Fairchild, 1957). Additional expansion of buildings on the Subject Property and the Rayo Property had occurred by 1960 (Continental, 1960). The railroad spur located on the western side of the building on the Subject Property was present by 1966 (Sanborn, 1966). Few changes to the configuration of the Subject Property occurred from 1960 through 1992 (Continental, 1970, 1976, 1986, 1992).

A.3 Findings of Previous Site Assessments

According to Webb, Blake and Webb have been the only occupants of the Subject Property since development of the land between 1950 and 1953. It is our understanding that no sampling and analysis of soil or groundwater has been completed at the Subject Property prior to the recent investigations of the Subject Property.

EKI reviewed several documents provided by Webb relevant to environmental conditions at the Subject Property. Because Webb's activities at the Rayo Property included use of the Subject Property for miscellaneous materials and hazardous waste storage, a brief summary of information concerning Webb's operations and chemical used at the Rayo Property is also provided herein.

Hart Report. In 1988, Fred C. Hart Associates completed an environmental compliance assessment of Webb's current operations at 9301 Rayo Avenue and 5030 Firestone Boulevard. While Hart's assessment included the Subject Property, it appears that the Property was not used during Webb's operations for purposes other than storage of raw materials and drums of hazardous waste. The Hart Report did not identify any chemical use at the Subject Property.

On the Rayo Property, the report indicates that Webb operations included: "...metal fabrication (shearing, bending, sawing, machining, welding), painting operations and some assembly." (Hart, 1988, page 2)

Raw materials used included: "...I-beam stock, channel stock, plate and sheet metal, tubing, angle iron, paints and solvents." (Hart, 1988, page 2)

Solvent use was described as: "Solvents (J209 and Solvent Blend) are used as thinner/solvent for maintaining viscosity and for cleaning equipment. These solvents both are a mixture of alcohols, esters, ketones, toluene, xylene, glycol ethers and petroleum distillates in varying concentrations." (Hart, 1988, page 2)

Wastes generated included: "...waste paint, used solvent, waste oil and coolants, scrap metal and general trash." (Hart, 1988, page 2)

Several hazardous materials were used in the cleaning and painting activities, these included: "...solvents, oils and paints. Solvent, specifically 1,1,1-trichloroethane (1,1,1-TCA), was used for cleaning steel parts and products. The waste generated from the cleaning activities was containerized in 55- gallon drums and sent to an off-site treatment, storage, and disposal facility." (Hart, 1988, page 2)

Bechtel Report. Bechtel completed a Preliminary Assessment/Site Inspection of the Subject Property and Rayo Property on behalf of the U.S. EPA Region IX pursuant to the listing of the sites on the Comprehensive Environmental Response, Compensation, and Liability Information System ("CERCLIS") list. The site inspection was completed on 24 May 1994. Bechtel's description of the Subject Property and hazardous substances generated by Webb is summarized as follows.

The Bechtel Report indicated that the equipment storage building on the Subject Property had: "...a hazardous substance storage area attachment on its southeast corner." (Bechtel 1994, page 2)

Related to Webb's operations on the Rayo Property, the report indicated that: "Hazardous substances used in the manufacturing process include solvents, paints, and petroleum-based lubricants. Prior to the mid-1980s, 1,1,1-trichloroethane was used as a solvent to clean fabricated metal pieces. The 1,1,1-trichloroethane was replaced in the mid-1980s with naphtha petroleum, a petroleum-based solvent..." (Bechtel 1994, page 2)

The Bechtel Report summarizes the sources of potential contamination from Webb operations as follows: "A former 8,000-gallon paint and water sump used during the wetpainting process. The sump was converted to hold paint filters for a dry-painting booth in the mid-1980s. Hazardous waste manifests from 1990 through 1993 indicate that fifty 55-gallon drums containing waste paint, used filters, and paint rags were transported off site for disposal..." (Bechtel 1994, page 6)

The 8,000 gallon paint and water sump and a second sump were investigated and closed in accordance with the Los Angeles County Department of Public Works, Environmental Programs Division requirements for underground storage tank closure. A closure approval letter was issued by the County on 17 December 1996. No significant releases were found in this area.

<u>Vision Reports</u>. The Vision reports do not provide chemical use or waste information specifically related to the Subject Property. Before discontinuing operations at the Rayo Property, Webb held South Coast Air Quality Management District Permit No. M58084 for a spray paint booth located on the Rayo Property. Chemical use information for products used at the Rayo Property during 1994 is presented in the appendices of the *Emissions Inventory* report (Vision, 1995). The products were:

- Danger Orange coating (product code 3-WE-2613) manufactured by P.F.I., Inc. Approximately one gallon was used in 1994.
- W/B Acrylic Enamel Safety Yellow coating (product code 728Y047) manufactured by Ellis Paint company. Approximately one gallon was used in 1994.
- W/B Acrylic Enamel Gray coating (product code 728A065) manufactured by Ellis Paint company. Approximately six gallons were used in 1994.
- W/B Acrylic Enamel Blue (Unibilt) coating (product code 728L044) manufactured by Ellis Paint company. Approximately five gallons were used in 1994.
- Cool-Tool II cutting and taping fluid manufactured by Monroe Fluid Technology and Premium AW Hydraulic Oil #32 supplied by Golden West Lubricants, Inc. The combined usage of cutting and hydraulic oils during 1994 is reported to be approximately 30 gallons.
- Rustlick WS-11 manufactured by ITW Fluid Products Group. The approximate quantity used is not reported.
- Kill-Cide 700 manufactured by ITW Fluid Products Group. The approximate quantity used is not reported.
- Solvent 105 supplied by Safety Kleen. Approximately 40 gallons were delivered to the site is 1994.

<u>Uniform Hazardous Waste Manifests.</u> The manifests, along with supporting documentation, indicate the disposition of various hazardous wastes removed from the site(s) by Industrial Waste Utilization, Inc. during March 1996 after Webb closed its operations. Industrial Waste Utilization, Inc.'s job order form indicates that the following wastes were removed and disposed off-site. Most, if not all, of these wastes originated from the Rayo Property.

- 3 55 gallon drums of paint filters
- 1 Lot of miscellaneous and 1 gallon containers
- 1 5 gallon pail of sealant
- 4 5 gallon pails of grease
- 1 15 gallon drum of aerosols
- 2 55 gallon drums of water/water based paint
- 1 55 gallon drum of consolidated solvents
- 2 55 gallon drums of rags
- 1 55 gallon drum of paint

several miscellaneous empty drums and containers.

The quantities disposed in March 1996 may not be typical of prior normal operations at the Rayo Property because Webb was in the process of closing down its operations.

According to a regulatory agency database search by Vista Information Solutions, Inc. dated 3 April 1996 ("Vista"), Webb was listed as a large quantity generator of non-acutely hazardous waste with the U.S. EPA's Resource Conservation and Recovery Act Program. This listing is associated with Webb's former operations at the Rayo Property. Webb had EPA Handler I.D. No. CAD008339467.

A.4 Regulatory Agency Information

According to the Vista report, Blake Rivet was listed as a small quantity generator of non-acutely hazardous waste with the U.S. EPA's Resource Conservation and Recovery Act Program. This listing is associated with Blake's former operations at the Subject Property. Blake had Handler I.D. No. CAD063798995.

The Vista report indicates that the Webb site is listed on the CERCLIS database and is under review by the U.S. EPA. Based on the Bechtel report (Bechtel, 1994) it appears that the CERCLIS listing pertains to both the Rayo Property and the Subject Property. The report indicates that further assessment is needed but that the site is considered a lower priority.

EKI contacted the City of South Gate to inquire about the existence of a permit for industrial wastewater discharge for the Subject Property. The City of South Gate file for Industrial Wastewater Discharge Permit No. 5181 indicates that Blake Rivet maintained the permit in connection with its production of aluminum and stainless steel aircraft rivets at the Subject Property. Its wastewater producing operations were sulfuric acid anodizing, tumbling, and deburring. The raw materials used included sulfuric acid, alkaline caustic, and chromic. Approximately 4,000 gallons of wastewater was discharged to the sewer from Blake operations each day. According to a process diagram submitted with the permit application, the anodizing operation included tanks containing the following; sulfuric acid anodize, dichromate seal, DX-34, CH-90 ETCH, and rinse waters. More detailed information describing these solutions was not provided. A spin dryer, vibrator and tumblers were also used in the anodizing area.

A Plumbing Plan submitted with the permit application shows that the wastewater from the anodizing area discharged to a below-ground concrete clarifier located outside the southeast corner of the building. The clarifier consists of three compartments and a sampling box at the point of discharge to the sanitary sewer. According to the Plumbing Plan, the clarifier was approximately 5 feet by 8 feet in area and 3 to 4 feet deep. The Plumbing Plan also indicates that rinse tanks outside the anodizing area may have drained to the clarifier.

A Notice of Violation was issued to Blake on 18 May 1979 by the Sanitation Districts of Los Angeles County for heavy metals discharge. Total chromium was detected at a concentration of 34.3 mg/l in the discharge wastewater from the clarifier. The results of a

subsequent wastewater sample analysis were reported in a Sanitation Districts of Los Angeles County Lab Report No. I-2782 dated 25 July 1979. The following analytical results were reported for the sample collected on 25 July 1979:

COD	105.9 mg/l
Suspended Solids	834.0 mg/l
pH	9.7
total chromium	16.5 mg/l
iron	41.8 mg/l
nickel	0.3 mg/l
oil & grease	7.0 mg/l

In a 27 October 1981 letter from the Sanitation Districts of Los Angeles County, Permit No. 5181 was voided because Blake Rivet was no longer in business. A City of South Gate inspector visited the site on 24 August 1992 and reported that all equipment and floor drains had been removed and that the clarifier had been filled with sand and concrete.

The Plumbing Plan also shows a concrete pit for a furnace and quench tank in an area that appears to be separate from the anodizing operations. The pit had a floor drain that may have discharged to the sanitary sewer. This discharge appears to have been to a separate sanitary sewer line than that of the clarifier. The sewer lines for the quench tank and clarifier apparently connect with a sanitary sewer which crosses through the Subject Property (see Figure 2).

Appendix B

Boring Logs

BORIN	la Loca Jervis	TION: B. Webl				truc	tion Log	Erlei Kalir			ki.	Inc.
DRILLI	RACTOR: /irone NG METI	x, Inc.						Boring/Well Name: B-01 Project Name: Webb				
	eopro	be Soil	Pro	be	- C-	om:	T.,	Project Number:				
					_ ''	0.0		GS ELEVATION: 0.00	TOTAL	DEPTE	ł· .	
	pe:	•				om:	Dia: 0.00in	GS ELEVATION: 0.00' BOREHOLE DIA: 2.00in	DATUM			.00'
ˈ		•			_ ''	0.0		DATE STARTED:	DATE C	Med		Sea Level
Typ							Dla:0.00in	10/28/97			28/	97
					_ 100	om:	То:	Rob Hesse				
	De: LAR FILL				Si	ze: 	Dia:	CERTIFIED BY: Beth Lamb, CEG			•	
Type	: Ben	tonite G	rout		F	rom:	0.00' To: 21.00'	REMARKS:				
Туре	:					rom:	To:					
Туре						rom:	To:					
 		PLES				T	10.			T	τ	T
TIME	TYPE / INTERVAL	SAMPLE	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	МА	ATERIAL DESCRIPTION		USCS CODE	LITHOLOGY	WELL CONSTRUCTION
		B1-5.5					grained, micaceous, loose, color change to grayish br SAND, light olive brown (2.5 grained, very loose, dry.		ne S	SM SP	F	Page 1 of 2

Jan 20 16:02:47 geo\logs\B-01 dwg

Boring &	& Well	Con	struct	ion Log	Erler &	 !	***	57
Boring/Well Nam					Kalinov	vsk	i. I	nc.
Project Name: Project Number:	Webb					• • • • • • • • • • • • • • • • • • • •	, .	110.
								
TIME COLLECTED TYPE \ INTERVAL	SAMPLE NUMBER RECOVERY	BLOW COUNT VAPOR	(OVM)	M	IATERIAL DESCRIPTION	USCS	LITHOLOGY	WELL CONSTRUCTION
	1-15.5		20-	moderate plasticity, low to	brown (2.5Y 4/2), (30,60,10,0), ughness, firm, moist. grayish brown (2.5Y 3/2). . (10,80,10,0), micaceous, non plastic, soft,	ML		ge 2 of 2

ONTRACTOR	B. Web	ь Со	mpo	any			Erle Kali	nov	٧S	ki,	Inc.
Virone	ex, Inc.						Boring/Weil Name: B-02				
COOPE	гнор: obe Soil	Deal					Project Name: Webb				
OCOPI		Prot	oe	F	rom:	To:	Project Number:				
_				_ '	0.	<u>00'</u> 0.00'	0.00	TOTAL	0000		
Type:						Dia: 0.00in	GB ELEVATION: 0.00'	TOTAL		<u>11.</u>	00'
THE CASING					rom: 0.	0, To: 0.00'	BOREHOLE DIA: 2.00in	DATUM	Med		ea Level
Type:						Dia:0.00in	DATE STARTED: 10/28/97	DATEC	10/		97
CREENS:				F	rom:	To:	Rob Hesse		/	-0/ -	
Type:				_ s	ize:	Dia:	CERTIFIED BY:				
NNULAR FIL	L:						Beth Lamb, CEG				
pe: Ben	tonite C	Frout			From:	0.00' To: 11.00'	REMARKS:				
pe:					From:	To:					
pe:					rom:	To:					
	APLES					10.			,	 -	
COLLECTED TYPE /		RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	MAT	ERIAL DESCRIPTION		USCS CODE	ПТНОСОСУ	WELL CONSTRUCTIO
		1 1	- 1		1	İ		i		1	L
	B2-5.5				2- 3- 4- 5- 6- 7- 8-		n brown (2.5Y 4/2), (10,30,60,0) ium dense, moist.), fine	SM		

Jan 20 16 02:56 geo\logs\8-02 dwg

Je	ervis	пон: В. Webt					tion Log	Erleı Kalir	10W	/S	ki,	inc.
Vi	rone:	x, inc.						Boring/Well Name: B-03				
RILLIN	Q METI	HOD:	D'					Project Name: Webb				
		obe Soil	Prol	oe	ĪĒ,	om:	To:	Project Number:				
				·····	_ ''	0.0	0.00'	0.00'	TOTAL D	SDTV	_	
Тур	e: :ASING:						Dia: 0.00in	GB ELEVATION: 0.00'	DATUM:		11	.00'
ANK C	ASING				Pr	om: 0.0	o' To: 0.00'	BOREHOLE DIA: 2.00in		Med		iea Level
Тур							Dla:0.00in	10/28/97	DATE CO	10/:		97
REE					_ Fr	om:	To:	Rob Hesse				
Тур			·		Si	ze:	Dia:	CERTIFIED BY:				
NNUL.	AR FILL	· 						Beth Lamb, CEG				
/pe:	Ben	tonite G	rout		F	rom:	0.00' To: 11.00'	REMARKS:				
pe:					F	rom:	To:					
/pe:						rom:	To:					
	SAM	PLES	,		VAPOR READING (OVM)	÷			1		l	
COLLECTED	\¥	m 85	ER.	BLOW COUNT	REAC	(£	MAT	TERIAL DESCRIPTION		CODE	ğ	WELL
Ĕ	TYPE /	SAMPLE	RECOVERY	Ŭ ≩	80	DEPTH				nscs c	LITHOLOGY	CONSTRUCTIO
8	- <u>-</u>	0,2	2	вго	YA.	2				nS	5	
- 1		1 1	l i									•
		B3-6				2- 3- 4- 5- 6- 7- 8-	grained, micaceous, medium			SM)		
		B3-6				3- 4- 5- 6- 7- 8- 9-	SAND, pale yellow (2.5Y 7/3 graded, very loose, dry.		S	SP -		
						3- 4- 5- 6- 7- 8- 10-	SAND, pale yellow (2.5Y 7/3 graded, very loose, dry.	dark grayish brown (2.5Y 3/2),	S	SP -		

98 Jan 20 16 03 04 geo\logs\B-03 dwg

ORING LOCATION:	Construction Log	_ Eric	er &
Jervis B. Webb Comp	pany	Kal	inowski, Inc.
Vironex, Inc.		Boring/Well Name: <u>B-04</u>	•
Geoprobe Soil Probe		Project Name: Webb	
ONDUCTOR CASING:	From: To:	Project Number:	
Type:	0.00' 0.00'	GS ELEVATION: 0.00'	TOTAL DEPTH: 21.00'
ANK CABING:	From: To:	BOREHOLE DIA: 2.00in	DATUM:
Type:	0.0' 0.00' Dia:0.00in	DATE STARTED:	DATE COMPLETED:
CREENS:	From: To:	10/28/97 LOGGED BY:	10/28/97
Type:	Size: Dia:	Rob Hesse	
NULAR FILL:		Beth Lamb,CEG	
pe: Bentonite Grout	From: 0.00' To: 21.00'	REMARKS:	
pe:	From: To:		
pe:	> From: To:		
SAMPLES	ON C		
TYPE / INTERVAL SAMPLE NUMBER RECOVERY BLOW COUNT	VAPOR READING (OVM) DEPTH (feet)	MATERIAL DESCRIPTION	WELL CONSTRUCTION WELL
B4-6	micoceous, slightly plastic, firm, mi	Y 5/3) mottled with dark gray (2.5Y 4/1), (20,50,30,0), fin noist. In (2.5Y 3/2), (10,30,60,0), fine to medium grained sand, i	SM

38 Jan 20 15:56.24 geo\logs\8-04 dwg

	Bo	ring	&	We	(Con	struc	tion Log	Erler &	<u>,</u>		
	_	Well N Name		B-0 Web					Kalino	wsł	ςi,	Inc.
1		Numb										
TING.	COLLECTED	TYPE \	SAMPLE	NUMBER	BLOWERT	COUNT	(OVM)	À	MATERIAL DESCRIPTION	USCS	ПТНОСОСУ	WELL CONSTRUCTION
			B4-1				13 14 15 16 17 18- 20- 21- 22- 23- 24- 25- 26- 27- 28-	CLAYEY SILT, dark grayish brown (2.5Y firm, moist. color change to dark gray (2.5Y 4/1).	4/2), (30,60,10,0), moderate plasticity, low toughness, soft to	ML		Page 2 of 2

98 Jan 20 15:56.27 geo\logs\B-04 dwg

Jervi:	s B. Web	Vell		ny				Erler & Kalinov	NS	ki, Inc.	
FILLING ME	ex, Inc.						Boring/Well Name: B-				
Geop	robe Soil	Prot	oe	Fr	om:	To:	Project Number:				
Type:				_	0.0		GS ELEVATION: 0.00'	TOTAL	. DEPTH	# 11 00'	
ANK CASIN	ia:		·····	Fre	om:	To:	BOREHOLE DIA: 2.00in	DATUN	A:	* 11.00'	
Type:				-	0.0	0.00	DATE STARTED:	DATE	COMPLE	ereo:	
CREENS:				Fro	om:	Dia:0.00in To:	10/28/97 LOGGED BY:	L	10/2	28/97	
Type:				_	ze:		Rob Hesse				
WNULAR FI	i.i.					Dia:	Beth Lamb,C	EG			
ype: Be	ntonite (Grout		F	rom:	0.00' To: 11.00'	REMARKS:				
ype:					rom:	To:					
ype:					rom:	To:					
	MPLES				I	T			T	T	
COLLECTED TYPE /	SAMPLE	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	м	NATERIAL DESCRIPTION		USCS CODE	WE CONSTR	ELL RUCTIO
					2-	SILTY SAND, dark olive t	brown (2.5Y 5/3), (10,30,60,0 moist.	O), fine grained			
	B5-6					SILTY SAND, dark olive t		D), fine grained			

Je CONTRA	ervis (on: B.Webb	Cor	npar	ıy	<u>-</u>		k	rler & Calinov	vsk	i, Inc.
Vir	ronex,							Boring/Well Name: B-	06	· · · · · · · · · · · · · · · · · · ·	
	O METHO	oe Soil	Prof	he.				Project Name: Webb			
	CTOR CA		1 10	06	Fre	om:	To:	Project Number:			
Туре		-			-	0.0		GS ELEVATION: 0.00'	TOTAL	DEPTH:	11.00'
HANK C					Fre	om:	บเล: บ.บบเก	BOREHOLE DIA: 2,00in	DATUR		11.00'
Tuna					_	0.0		DATE STARTED:	DATE	OMPLETI	ED:
Type BCREEN					Fre	om:	Dia:0.00in To:	10/28/97		10/28	3/97
T					_			Rob Hesse			
Type	AR FILL:		· · · · · ·		512	ze:	Dia:	CERTIFIED BY: Beth Lamb,CE	.c		
Type	Bento	onite				rom:	0.00' To: 11.00'	REMARKS:			
Type:											
Type:						rom: rom:	To:				
	SAMP	LES	 -			rom:	To:			, , , , , , , , , , , , , , , , , , , 	
			}:	Ä	VAPOR READING (OVM)	()					<u>></u>
COLLECTED	TYPE / INTERVAL	SAMPLE NUMBER	RECOVERY	BLOW COUNT	8 (O)	DEPTH (feet)		MATERIAL DESCRIPTION		Jacs code	WELL CONSTRUCTI
ខ្ល	FE	ΝZ	25	٥٥	VAPO	DEP				l SSC	트
	- 1						SILTY SAND, dark gro	yish brown (2.5Y 4/2), (10,3	30,60,0), fine	1	
		6-6				2- 3- 4- 5- 6- 7- 8- 10-	grained sand, micace	rous, medium dense, moist.	30,60,0), fine		
						3- 4- 5- 6- 7- 8- 9-	1	rous, medium dense, moist.	30,60,0), fine		4

BORING L	ocation: vis B. Wet					ction Log	K	rler 8 alinov	vsk	ti, Inc.
	nex, Inc.	—-·					Boring/Well Name: B-0 Project Name: Webb	7		
	probe Soi	l Prol	o e	le.			Project Number:			
				_ 100	om: 0.	0.00' To:		Leona		
Type:						Dia: 0.00in	GB ELEVATION: 0.00'	DATUR	DEPTH:	11.00'
	ing:			_ Fro	om: 0.	0' To: 0.00'	BOREHOLE DIA: 2.00in			
Type:						Dia:0.00in	10/28/97	DATE	10/2	180: 8/97
	·			- .	m:	To:	Rob Hesse			
Type:	FILL:			Siz	:e:	Dia:				
-		^ -			Beth Lamb,CEG					
	lentonite (orou t			From: 0.00' To: 11.00'					
ype:					om:	To:				
Гуре:	AMPLES				om:	To:				
		'ERY	TNUO	VAPOR READING (OVM)	DEPTH (feet)	M.	ATERIAL DESCRIPTION		CODE	₩ELL
COLLECTED	INTERVAL SAMPLE NUMBER	RECOVERY	BLOW COUNT	VAPOR (0	DEPTH				uscs (WELL CONSTRUCTIO
	B7-2			•	3- 4- 5- 6- 7-	sand, micaceous, medic	own (2.5Y 5/2), (10,30,60,0), um dense, moist. rayish brown (2.5Y 5/2).			
	B7-11				9- 10-	Total Depth = 11 feet.				

IORING LO	vis B. Wel					tion Log	K	rler & alinov	v VS	ki, Inc.
Viror	nex, Inc.	l Dest					Boring/Well Name: 8-0 Project Name: Webb			
	orobe Soi	1 Pro	be	F	rom:	. To:	Project Number:			
Type:				-	0.0	0.00' 0.00' Dia: 0.00in	G8 ELEVATION: 0.00'	TOTAL	DEPTI	#: 11.00'
ANK CABI	NG:	·		F	rom:	To:	BOREHOLE DIA: 2.00in	DATUM	l:	11.00
Type:				-	0.0	0.00 Dia:0.00in	DATE STARTED: 10/28/97	DATE C		
CREENS:				Fi	om:	To:	LOGGED BY:		10/	28/97
Type:	E01 L .			s	ize:	Dia:	Rob Hesse			
		Grout			From:	0.00' - 11.00'	Beth Lamb,CE	G		
pe:	e: Bentonite Grout				rom: rom:					
pe:	····				rom:	To:				
	AMPLES					10:			т —	
COLLECTED TYPE /	SAMPLE NUMBER	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	МА	TERIAL DESCRIPTION		USCS CODE	WELL CONSTRUCTION
	B8-2				1- 2- 3- 4- 5- 6- 7- 8-	SILTY SAND, grayish bro		fine grained	SM	
	B8-11				9-	Total Depth = 11 feet.				

38 Jan 20 15.56·56 geo\logs\B-08.dwg

BORING LO Jerv	cation: is B. Web					tion Log	Erler Kalir	00 10W	/sl	ζi,	Inc.
	nex, Inc.						Boring/Well Name: B-09				
PRILLING M	ETHOD:						Project Name: Webb				
	robe Soil	Prol	be	Te-	om:	To:	Project Number:				
				_ ''	0.0	0.00'	0.00'	TOTAL D	EDTM-	,	
Type:	NO:					Dia: 0.00in	gs elevation: 0.00'	DATUM:		11.0	0'
	····			_ ' '	om: 0.(BOREHOLE DIA: 2.00in	DATE CO			
Type:				<u> </u>		Dia:0.00in	10/28/97			8/97	7
				_	om: 	То:	Rob Hesse				
Type:	791 8 a			Si	ze:	Dia:	CERTIFIED BY:				
							Beth Lamb,CEG				
	entonite G	rout		From: 0.00' To: 11.00'							
Type:					rom:	To:					
Type:					rom:	To:					
	MPLES	Τ.	E	Nig	€				ш	T	
COLLECTED TYPE /	SAMPLE	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	МА	TERIAL DESCRIPTION		USCS CODE	LITHOLOGY	WELL CONSTRUCTIO
8 7	2 0,2	2	임	YA.	ä				Š	5	
	B9~5.5				2- 3- 4- 5- 7- 8-		brown (2.5Y 4/2), (5,30,75,0), fine loose, moist.		SM		
	B9-10.5				9-	SANDY SILT, dark gray (2. micaceous, non plastic, so	5Y 4/1), (10,50,40,0), fine grained solution of to firm, moist.	and,			7

BORIN		B. Web					tion Log	Ka	ler & alinov	vs Vs	ki,	Inc.
\	/ironex							Boring/Well Name: <u>B-10</u>				
	NG METH			L .				Project Name: Webb				
	eopro	be Soil	Prol	De_	Į E.	rom:	To:	Project Number:				
					_ ''	0.0	0.00'	0.00'	TOTAL	DEPT		
Typ	CABING:						Dia: 0.00in	GS ELEVATION: 0.00'	DATUM		11.	.00'
	CABING:					rom: 0.6	O' To: 0.00'	BOREHOLE DIA: 2.00in				
Тур							Dia:0.00in	10/28/97	DATE C		ETED: 28/9	97
BCREE	NS:				Fr	om:	To:	Rob Hesse			······	
Тур					s	ze:	Dia:	CERTIFIED BY:				
ANNU	LAR FILL:							Beth Lamb,CEG				
Type:	Bent	onite C	3rout		1	rom:	0.00' To: 11.00'	REMARKS:				
Type:					F	rom:	To:					
Туре:					F	rom:	To:					
	SAM	PLES				T				T	Г	
COLLECTED	TYPE / INTERVAL	SAMPLE	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	м	ATERIAL DESCRIPTION		USCS CODE	ПТНОСОСУ	WELL CONSTRUCTIO
ខ្ល	ΕĒ	ΩŽ	REC	¥07	VAP(DEP				USC	팀	
						3-					1-1-4	4
		310-6				5- 6- 7- 8- 9-	grained sand, micaceo	ish brown (2.5Y 4/2), (10,30,6 us, loose, moist. ark grayish brown (2.5Y 3/2).	0,0), fine	SM		
		10-11				5- 6- 7- 8- 9- 10-	grained sand, micaceo	us, loose, moist.	0,0), fine	SM		

BORING LOCA Jervis	TION: B. Wet				truc	tion Log	Erle Kali	r & nov	r VS	ki,	, Inc.
VITONE DRILLING MET GEOPTO CONDUCTOR O Type: BLANK CASING	x, Inc. Hod: Obe Soil	l Pro	be	_	om: 0.	00' To: 0.00' Dia: 0.00in To: 0.00'	Boring/Well Name: B-11 Project Name: Webb Project Number: QB ELEVATION: 0.00' BOREHOLE DIA: 2.00in	TOTAL	DEPTI		.00'
Type: 8CREENS: Type: ANNULAR FILL	a			_	ze:	Dia:0.00in To: Dia:	LOGGED BY: Rob Hesse CERTIFIED BY: Beth Lamb, CEG	DATE C	10/		
Type: Ben Type: Type:	tonite (Grout		F	rom:	0.00' To: 11.00' To: To:	REMARKS:				
TIME COLLECTED	SAMPLE	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	м	ATERIAL DESCRIPTION		USCS CODE	LITHOLOGY	WELL CONSTRUCTION
	B11-6				1- 2- 3- 4- 5- 6- 7- 8- 10-	grained sand, micaceou	sh brown (2.5Y 4/2), (10,30,60,0) us, medium dense, moist. urk grayish brown (2.5Y 3/2).	, fine	SM		

Jan 20 15:57 20 geo\logs\B-11 dwg

Jervis B. Web	Veli C		Kali	Erler & Kalinowski, Inc.				
Vironex, Inc.				Boring/Well Name: B-12				
RILLING METHOD:	0			Project Name: Webb				
Geoprobe Soil	Probe	F	rom:	Project Number:				
		_ ' '	0.0	00' GS ELEVATION: 0.00'	TOTAL D	EPTI	4:	
Type:		- -		2.00111	DATUM:		" 11.	00'
		_ '	rom: 0.0	00' BOREHOLE DIA: 2.00in				
Туре:				.00in 10/28/97	DATE CO		28/9	7
CREENS:		_ Fi	rom:	LOGGED BY: Rob Hesse				
Туре:		S	ize:	CERTIFIED BY:				
ANNULAR FILL:				Beth Lamb,CEG				
ype: Bentonite (Grout		From:	1.00' REMARKS:				
ype:			From:	_				
ype:			rom:	_				
SAMPLES		Š	T				П	
TYPE / INTERVAL SAMPLE	RECOVERY BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	MATERIAL DESCRIPTION		Jaoo Sosn	LITHOLOGY	WELL CONSTRUCTION
B12-6			3- 3- 4- 5- 6-	dark grayish brown (2.5Y 4/2), (10,30,60,0 micaceous, medium dense, moist.)), fine	SM		

Boring & Well Co BORING LOCATION: Jervis B. Webb Compa		Erle Kali	r & nowski, Inc.
CONTRACTOR: Vironex, Inc. DRILLING METHOD:	ony	Boring/Well Name: B-13 Project Name: Webb	nowski, inc.
Geoprobe Soil Probe	From: To:	Project Number:	
Type:	0.00' 0.00' Dia: 0.00in	GB ELEVATION: 0.00	TOTAL DEPTH: 11.00'
BLANK CASING:	From: To: 0.00'	BOREHOLE DIA: 2.00in	DATUM:
Type:	Dia:U.UUin	DATE STARTED: 10/28/97	DATE COMPLETED: 10/28/97
	From: To:	Rob Hesse	
Type:	Size: Dia:	Beth Lamb, CEG	
Type: Bentonite Grout	From: 0.00' To: 11.00'	REMARKS:	
Type:	From: To:		
Type:	From: To:		
TYPE / INTERVAL SAMPLE NUMBER STOOVERY BLOW COUNT	VAPOR READING (OVM) DEPTH (feet)	NATERIAL DESCRIPTION	WELL CONSTRUCTION
B13-6	2- 3- 3- 4- SILTY SAND, dark gray grained sand, micaced 5- 6- 7- 8- 9-	vish brown (2.5Y 4/2), (5,20,75,0) ous, loose, moist.	SM SM

98 Jan 20 15:57·34 geo\logs\B-13.dwg

Boring/Well Name: B-14 Project Name: Webb Project Number: Project Number: Proje		LOCATION: ervis B. Wel					tion Log	K	rler & alinov	vs	ki,	Inc.
Project Nation Prome Prome O.00' Dic: O.00in D	Vii	ronex, inc.					В	oring/Well Name: <u>B-14</u>	4			
From: To:			1 0									
DOMENIA: From: To: O.00' Dia: 0.00in DATUM Mean Sea Level Dia: 10/28/97 DATE COMPULETES: 10/28/97			Proc	oe	Fre	om:	P	roject Number:				
DOMENIA: From: To: O.00' Dia: 0.00in DATUM Mean Sea Level Dia: 10/28/97 DATE COMPULETES: 10/28/97	Tun				-	0.0	0.00'	R ET EVATION: 0.00'	TOTAL	DEPTH	1: 44	00'
Ne: Ne: Size: Did: Septiciper Size: Beth Lamb, CEG REMANKS: REMANKS: Beth Lamb, CEG REMANKS: REMANKS: REMANKS: Beth Lamb, CEG REMANKS: SAMPLES Size: Size: Did: Size: Size: Did: Size: Size: Size: Did: Size:					Fre		Dia: U.UUIN I		DATUM			
Ne: Ne: Size: Did: Septiciper Size: Beth Lamb, CEG REMANKS: REMANKS: Beth Lamb, CEG REMANKS: REMANKS: REMANKS: Beth Lamb, CEG REMANKS: SAMPLES Size: Size: Did: Size: Size: Did: Size: Size: Size: Did: Size:		·			_ ' ' '	0.0	0.00'	TE STARTED:	DATE C			ea Level
Size: Dia: Size: Dia: Bentonite Grout From: 0.00' To: 11.00' From: To: From: To: SAMPLES SAMPLES SIZE: Dia: Beth Lamb, CEG REMARKS: Rema	Type				- Fee		Dia:U.UUIN					97
Beth Lamb, CEG Beth Lamb, CEG		···			- .							
Bentonite Grout From: 0.00' To: 11.00' From: To: From: To: SAMPLES SAMP	Type				Siz	ze:	Dia: CE		.0			
To:			<u> </u>				RE					
SAMPLES Year State Stat		Bentonite	Grout									
SAMPLES Your Branch Your	Type:											
Aspholt. 2 - 3 - 4 - SILTY SAND, dork grayish brown (2.5Y 4/2), (5.20,75,0), fine grained sand, micaceous, medium dense, moist. 5 - 6 - 7 - 8 - 8 -	Гуре:	SAMPLES		 -		rom:	To:					
Aspholt. 2 - 3 - 4 - SILTY SAND, dork grayish brown (2.5Y 4/2), (5.20,75,0), fine grained sand, micaceous, medium dense, moist. 5 - 6 - 7 - 8 - 8 -				호	ADIN	1				u u		
Aspholt. 2 - 3 - 4 - SILTY SAND, dork grayish brown (2.5Y 4/2), (5.20,75,0), fine grained sand, micaceous, medium dense, moist. 5 - 6 - 7 - 8 - 8 -	COLLECTED	RVAL PLE 19ER	VER	00	RE.	<u>E</u>	MATERI	AL DESCRIPTION		8	၂ ရှိ	WELL CONSTRUCTION
Aspholt. 2 - 3 - 4 - SILTY SAND, dork grayish brown (2.5Y 4/2), (5.20,75,0), fine grained sand, micaceous, medium dense, moist. 5 - 6 - 7 - 8 - 8 -	77	SA SA	RECC	ð.	APOF ()EPTI				SCS] 원	Johnstroom
		B14-6				2- 3- 4- 5- 6-			,75,0), fine	SM		
B14-11 Total Depth = 11 feet.						9-						

5030 Firestone Blvd., :	South Gate, CA	Erler & Kalinowski, Inc.			
West Hazmat Drilling DRILLING METHOD: Hollow Stem Auger CONDUCTOR CASING:	From: To:	Boring/Well Name: B-15 Project Name: Webb Project Number:			
T	0.00' 0.00'	GB ELEVATION: 0.00'	TOTAL DEPTH: FO FO'		
Type:	Dia: 0.00ir	<u>.</u> . 1	DATUM: 52.50'		
	From: To: 0.00'	BOREHOLE DIA: 2.00in DATE STARTED:			
Type: screens:	Dia:U.UUin	12/02/97	DATE COMPLETED: 12/02/97		
	From: To:	LOGGED BY: Rob Hesse			
Type:	Size: Dia:	CERTIFIED BY:			
		Beth Lamb, CEG			
Type: Bentonite Grout	From: 0.00' To: 52.50'	,			
Type:	From: To:				
Type:	From: To:				
TYPE / SAMPLE SAMPLE NUMBER SAMPLE SA	VAPOR READING (OVM) DEPTH (feet)	MATERIAL DESCRIPTION	WELL CONSTRUCTION		
	sorted, dense, moist.	(2.5Y 6/2), (0,5,95,0), fine to medium grained, poor rown (2.5Y 4/2), (10,40,50,0), fine to medium grain city, very dense, moist.	SP		

Boring Project	i/Well Ne t Neme: t Number	me: <u>B</u> W	3-15 /ebb				Erler & Kalinov	Erler & Kalinowski, Inc.				
COLLECTED	TYPE \ INTERVAL	SAMPLE	RECOVERY	BLOW	VAPOR READING (OVM)		MATERIAL DESCRIPTION	USCS	ПТНОГОСУ	WELL CONSTRUCTION		
		5-20.5				13- 14- 15- 16- 17- 18- 20- 21- 22-	CLAY, very dark gray (2.5Y 3/1), (70,20,10,0), fine grained sand, moderate to high plasticity, firm, moist to wet. CLAYEY SILT, dark grayish brown (2.5Y 4/2), (30,50,20,0), fine to medium grained sand, slightly plastic, micaceou, firm, moist, interbedded with lensed SAND (< 1 inch), dark grayish brown (2.5Y 4/2), fine to medium grained, loose, moist.	CL				
	B15	-26.5			2	- 1	SANDY SILT, dark grayish brown (2.5Y 4/2), (15,80,5,0), fine grained sand, micaceous, lense, moist.					
					28	pl	LAY, dark grayish brown (2.5Y 4/2), (70,20,10,0), micaceous, medium to high asticity, soft to firm, moist to wet.	CL		**		

oring/Well Na				,,,,	401	ion Log	Erler 8		_
ojeot Neme:		-15 ebb					Kalinov	vski,	inc.
oject Numbe	Pr: 			<u> </u>					
COLLECTED TYPE \ INTERVAL	SAMPLE	RECOVERY	BLOW	VAPOR READING (OVM)			MATERIAL DESCRIPTION	USCS CODE LITHOLOGY	WELL CONSTRUCTIO
	B15-31			3 3 4	34- 35- 36- 37-	micaceous, very dense, moist. SILTY SAND, light brownish gray moist. CLAY, dark grayish brown (2.5Y firm, moist. SAND, light brownish gray (2.5Y firm, moist. SILTY CLAY, dark grayish brown (to high plasticity, soft to firm, moist.	(2.5Y 4/2), (15,50,35,0), fine grained sand, very dense, (2.5Y 6/2), (5,35,60,0), fine grained sand, very dense, 4/2), (70,25,5,0), medium to high plasticity, soft to 5/2), (5,15,80,0), fine to medium grained, poorty 2.5Y 4/2), (50,40,10,0), fine grained sand, medium oist.	ML SM CL SP CL SP	
B1	5-44.5			4	4 - **	LAYEY SILI, dark grayish brown (: el.	2.5Y 4/2), (20,70,10,0), fine grained sand, dense,	ML	

38 Jan 20 15 57 47 geo\logs\B-15.dwg

			Co	nstr	ruct	on Log	Erler &			75
Boring/Weli Project Nem Project Num	We!						Erler & Kalinowski, Inc.			
TIME COLLECTED TYPE \	SAMPLE	RECOVERY	BLOW	VAPOR READING (OVM)		MATERIAL DES	CRIPTION	USCS	LITHOLOGY	WELL CONSTRUCTIO
					47					
					47 -					7
					48-					
					49-					4 4
					50-	Pushed probe to sound for water from 50-52	feet, no water.			, 7
					51-		İ			
					52-	Total Depth = 52.5 feet.				. 4
					53-	Sept. Selection			4¥	
					54-					
					55-					
					56-					
					57-					
					58-					
					59 –					
					60-					
					61-					
				6	52					
										Page 4 of 4

38 Jan 20 15.57:49 geo\logs\8-15 dwg

ORING LOC	атюн: Fireston					ion Log	E K	Kalinowsl						
Virone	ex. Inc.					Bo	oring/Well Name: B-	16						
RILLING ME							Project Name: Webb							
ONDUCTOR	V Stem /	Auger		Fee	om:	To:	oject Number:							
		······································		_ ' ``	0.0	0.00'	ELEVATION: 0,00'	TC	TAL DE	EPTH:				
Type:						Dia: U.UUIN		DA	TOTAL DEPTH: 51.50'					
				Fre	om: 0.0	0.00'	REHOLE DIA: 8.00in		١			o Level		
Type:						Dia:0.00in	12/02/97	12/02/97 DATE C						
CREENS:				Fro	m:	To: Loc	Rob Hesse			-	2/9			
Type:				Siz	:e:	Dia: CER	MIFIED BY:							
NNULAR FIL	LL:						Beth Lamb, C	CEG						
ype: Ber	ntonite G	rout	**	Fr	rom: C	.00' To: 51.50'	WARKS:							
Гуре:				Fr	rom:	To:	•							
ype:					om:	To:								
	MPLES					7.0.					Т			
COLLECTED TYPE /		RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	MATERIA	AL DESCRIPTION			USCS CODE	ПТНОГОСУ	WELL CONSTRUCTIO		
					2-	SILTY SAND, very dark grayish medium grained sand, micaced),65,0), fine	to			4 6		
	B16-6	4 5 8			2- 3- 4- 5-		ous, dense, moist.	0,65,0), fine	to					

98 Jan 20 16.03:20 geo\logs\8-16 dwg

Boring, Project	Well N Name Number	eme: <u>B</u>	ell -16 /ebb	Co	onstr	uct	ion Log Erler & Kalinov	Erler & Kalinowski, Inc.				
TIME	TYPE \ INTERVAL	SAMPLE	RECOVERY	BLOW	VAPOR READING (OVM)		MATERIAL DESCRIPTION	USCS	ПТНОГОСТ	WELL CONSTRUCTION		
		B16-16				13- 14- 15- 16- 17- 18- 20- 21- 22-	SILTY SAND, very dark grayish brown (2.5Y 3/2), (5,25,70,0), fine to coarse grained sand, dense, moist. SANDY SILT, olive brown (2.5Y 4/3), (15,60,25,0), fine-grained sand, micaceous, firm, moist. color change to dark gray (2.5Y 4/1). SILTY SAND, dark grayish brown (2.5Y 4/2), (10,30,60,0), fine grained sand, poorly sorted, micaceous, soft, moist.	ML				
	В	16-26	3 4 7		2 2	1	SILTY CLAY, gray (2.5Y 5/1) and dark gray (2.5Y 4/1), (60,35,5,0), ine grained sand, medium to high plasticity, firm, wet.	СГ		age 2 of 4		

Jan 20 16:03:23 geo\logs\B-16 dwg

Boring/Well Name: Project Name: Project Number:		16	<u> </u>	, iistr	ucı	ion Log Erle Kali	Erler & Kalinowski, Inc				
TIME COLLECTED TYPE \ INTERVAL	NUMBER	RECOVERY	BLOW	VAPOR READING (OVM)		MATERIAL DESCRIPTION	USCS CODE LITHOLOGY	WELL CONSTRUCTION			
B16-		1	7 8 5 0 2 4		30 - 31 - 32 - 33 - 34 - 35 - 36 -	SANDY SILT, dark gray (2.5Y 4/1), (15,50,35,0), fine grained micaceous, dense, moist to wet. SAND, light grayish brown (2.5Y 6/2), (0,15,85,0), fine graine sorted, dense, moist. SANDY SILT, dark gray (2.5Y 4/1), (15,50,35,0), fine grained	d, well				
B16	11	1:	2		1	micoceous, firm, wet.					
B16-4	5	15 18			c	LAYEY SILT, dark gray (2.5Y 4/1), (30,60,10,0), fine grained slightly plastic, firm, wet.	and,	•			

Borin	g & V	/ell	Co	onstr	uct	ion Log	Erler &	<u> </u>		79
Boring/Well Project Nerr		<u>3-16</u> Vebb					Kalino	wsl	Κi,	Inc.
oject Num			·						•	
TIME COLLECTED TYPE \	SAMPLE	RECOVERY	1	VAPOR READING (OVM)		N	IATERIAL DESCRIPTION	USCS	LITHOLOGY	WELL CONSTRUCTIO
			15 18 23		47-					4.
					48	SANDY SILT, dark gray (2. micaceous, firm, moist.	5Y 4/1), (15,50,35,0), fine grained sand,			
					49-					
	B16-51		14		50-					
			17		51-	Total Depth = 51.5 feet.]_	
					53-					
					54-					
					55-					
					56-					
					57 -					
					58-					
				5	59					
				6	50 -					
					51-					
				6	2-					
	geo\logs\B-1	<u>. </u>			1		-		<u> Р</u>	age 4 of 4

Boring & Well BORING LOCATION: 5030 Firestone BI				Erler & Kalinowski, Inc.					
CONTRACTOR: Vironex, Inc. DRILLING METHOD: Hollow Stem Auge				Boring/Well Name: 8-17 Project Name: Webb					
CONDUCTOR CASING:		From: 0.0	70: 0.00' Dia: 0.00in	Project Number: as elevation: 0.00'	TOTAL	DEPTH:	61.50'		
BLANK CABING: Type:		From: 0.0	To:	BOREHOLE DIA: 8.00in DATE STARTED: 12/03/97	DATE C	Mean	Sea Level		
Type:		From: Size:	To: Dia:	Rob Hesse CERTIFIED BY: Beth Lamb, CEG					
Type: Bentonite Grout Type:		From: (To:	REMARKS:	-				
Type: SAMPLES	9	From:	To:			· · ·			
TIME COLLECTED TYPE / INTERVAL SAMPLE NUMBER	BLOW COUNT VAPOR READII	(OVM) DEPTH (feet)	MA	ATERIAL DESCRIPTION		USCS CODE	WELL CONSTRUCTION		
B17-6 B17-11 B17-11 B17-11		1 1	SILTY SAND, very dark gray	rish brown (2.5Y 4/2). (2.5Y 4/2), (5,15,80,0), fine to medium		SM			

96 Jan 20 16.03 36 geo\logs\B-17 dwg

Boring & Boring/Well Name: Project Name: Project Number:	B-17 Webb				Erler & Kalinowski, Inc.				
TIME COLLECTED TYPE INTERVAL SAMPLE	RECOVERY	COUNT	(OVM)	MATERIAL DESCRIPTION	USCS	CODE	WELL CONSTRUCTION		
			13-	SANDY SILT, dark grayish brown (2.5Y 4/2), (10,60,30,0), fine grained sand, micaceous, dense, saturated.	. М				
B17-1	5 4 4 7		16-	color change to dark gray (2.5Y 4/1).					
	7 8 9		1 1	CLAYEY SILT, dark gray (2.5Y 4/1), (30,60,10,0), fine grained micaceous, slightly plastic, firm, wet.	sand,				
B17-21	8 10 10	1	21-	color change to dark graysh brown (2.5Y 4/2), saturated.			•		
	10 11 12		23-	CLAYEY SILT, gray (2.5Y 5/1) with dark yellowish brown 10YR 4/4) specks, (40,60,0,0), slightly plastic, firm, wet.			Δ.		
817-26	7		25-	LAY, gray (2.5Y 5/1) mottled with dark gray (2.5Y 4/1), (60,3 nedium to high plasticity, firm, wet.	5,5,0), CL				
	10		27-				•		
	12 13			NDY SILT, dark gray (2.5Y 4/1), (15,50,35,0), fine grained san caceous, firm, wet.	d, ML	M			

oring/ oject	Well No Name: Numbe	ame: B	-17 ebb	- OL		tion Log Erler Kaline	Erler & Kalinowski, Inc.				
COLLECTED	TYPE \	SAMPLE NUMBER	RECOVERY	BLOW	VAPOR READING (OVM)	MATERIAL DESCRIPTION	USCS CODE LITHOLOGY	WELL CONSTRUCTION			
		B17-31.5		13 14 15 10	30 31- 32- 33-	CLAYEY SILT, dark gray (2.5Y 4/1), (30,50,20,0), fine grained sand slightly plastic, firm, wet.	I,				
		B17-36		12	34 - 35 - 36 -	sorted, dense, wet. SANDY SILT, dark gray (2.5Y 4/1), (15,50,35,0), fine grained sand,	ML				
			9	3 5	38 -	color change to dark grayish brown (2.5Y 4/2).					
	В	117-41	11	4	40-	CLAYEY SILT, dark gray (2.5Y $4/1$), (30,60,10,0), fine grained sand, slightly plastic, firm, wet.					
			14		43 - 44 - 45 -	SANDY SILT, dark gray (2.5Y 4/1), (15,50,35,0), fine grained sand, micaceous, firm, wet.					
	81	7-46	15								

				onstr	ıct	on Log Er	ler &		_	83
Boring/Wei Project Na		3-17				Ka	linow	/sl	(i.	Inc.
roject Nu		Vebb							,	
-				T T						
TIME COLLECTED	INTERVAL SAMPLE NUMBER	RECOVERY		VAPOR READING (OVM)	•	MATERIAL DESCRIPTION		USCS	LITHOLOGY	WELL CONSTRUCTIO
COULT	B17-53.5		16 14 16 16 16 16 16	5 5 5	3- 5	size of sand grains increases to fine to medium grained. rater level 56.9 feet. ILTY SAND, gray (2.5Y 5/1), (5,25,70,0), fine to coarse grand, well sorted, dense, saturated.	ined	900 950	ПТНОГ	WELL CONSTRUCTION

5030 Fires				etion Log	Erler & Kalinowski, Inc. Boring/Well Name: 8-18				
Vironex, In	c.								
PRILLING METHOD:	A	_			Project Name: Webb				
Hollow Ste		er	From:	To:	Project Number:				
Tunas			0.	0.00'	GB ELEVATION: 0.00'	TOTAL	DEPTH:		
Type:			From:	Dia: 0.00in	BOREHOLE DIA: 8.00in	DATUA	4.	6.50'	
			0.	0.00	DATE STARTED:	DATE	Mean	Sea Level	
Type:			From:	Dia:0.00in To:	12/03/97 LOGGED BY:		12/03		
T					Rob Hesse				
Type:			Size:	Dia:	Beth Lamb, CEG				
Type: Bentonit	Crout			0.00' - 40.50'	REMARKS:				
	- GIOUT		From:						
Type:			From:	To:					
Type: SAMPLES			From:	To:					
		Z Ž	1				ا سا	_	
TYPE / INTERVAL	NUMBER	COC 2	N O H	м	MATERIAL DESCRIPTION		CODE	WELL CONSTRUCTION	
TYPE / INTERVAL	NUMBER	BLOW COUNT	(OVM) DEPTH (feet)				USCS CODI	CONSTRUCTIO	
B18-6	1 1 1	0.0 p 0.0 p 1 4 8.0 pp 1 0.0 pp	5- pm 7- pm 8- 9-	SILTY SAND, olive brown micaceous, moist, from color change to very da color change to very dar	(2.5Y 4/3), (5,30,65,0), fine grain cuttings. rk grayish brown (2.5Y 3/2). rk grayish brown (2.5Y 3/2).		SM T		

Boring/V Project !	Well Name		18			, uc	tion Log	Erler & Kalinowski, Inc.			
TIME	TYPE \ INTERVAL	NUMBER	RECOVERY	COUNT	VAPOR READING (OVM)		M	ATERIAL DESCRIPTION	USCS	ПТНОГОСУ	WELL CONSTRUCTIO
	B18-	-16	7 8	2	6.0 ppm 0.0 ppm		SILTY SAND, grayish brown sand, micaceous, dense, CLAYEY SILT, dark grayish brownish gray (2.5Y 6/2) plastic, firm, moist.	n (2.5Y 5/2), (5,30,65,0), fine grained moist to wet. brown (2.5Y 4/2) and mottled with light , (30,60,10,0), fine grained sand, slightly	SM		
	B18-	21	8 111 111 111	4.9 0.0 17.	0 ppm 0 ppm 0 ppm 0 ppm 0 ppm	18- 19- 20- 21- 22-	grained sand, micaceous, CLAYEY SILT, dark grayish	brown (2.5Y 4/2), (30,60,10,0), fine			
	B18-2	5.5	15 15 16 8 10			23 – 24 – 25 –	SANDY SILT, dark grayish b grained sand, dense, moist	rown (2.5Y 4/2), (10,60,30,0), fine			
	B18-2	/	20 8 11 14 15			26-	plasticity, firm, moist.	5/2), (60,35,5,0), medium to high Y 4/1), (30,60,10,0), fine grained sand,	CL		

Boring & Well Construction Log Erler & Kalinowski, Inc. B-18 Webb Project Name: Project Number: RECOVERY BLOW COUNT VAPOR READING (OVM) LITHOLOGY WELL CONSTRUCTION MATERIAL DESCRIPTION 30 -12 B18-31 13 31-32-33-34-35 -14 B18-36 14 SW SAND, light grayish brown (2.5Y 6/2), (0,15,85,0), fine to medium 36-15 grained sand, well sorted, dense, moist. 37 -38-0 39-40 - CLAYEY SILT, dark gray (2.5Y 4/1), (30,60,10,0), fine grained sand, 13 ML T slightly plastic, firm, moist. B18-41 18 SILTY SAND, gray (2.5Y 5/1), (5,10,85,0), fine grained sand, dense, 41-20 moist to wet. 42-43-44 wetness increases to wet to saturated. 18 B18-46 20

Jan 20 16 03 57 geo\logs\8-18.dwg

Page 3 of

	Bo	ring	& W	ell	C	nst	ruct	ion Log		Erler &				-	
	· ·	Well No		<u>-18</u>					Kalinowski, Inc.						
ľ	Project			ebb							.	•••			
[TIME	TYPE \	SAMPLE			VAPOR READING (OVM)			MATERIAL DESCRIPTION		USCS	ПТНОГОСУ	WELL CONSTRUCTIO	N	
					21		47- 48- 49- 50- 51- 52- 53- 54- 55- 56- 57- 58- 60- 61-	Total Depth = 46.5 feet.							
_												ρ,	age 4 of 4	.	

Jan 20 16.03:59 geo\logs\8-18.dwg

Boring & W	/ell	C	ons	truc	ion Log Erler	&			88
BORING LOCATION: 5030 Firestor							sl	ζi.	Inc.
CONTRACTOR: West Hazmat					Boring/Well Name: 8-19			,	
PRILLING METHOD: Hollow Stem	luger				Project Name: Webb				
CONDUCTOR CASING:	rager		Fr	om:	Project Number:				
Type:	••		-	0.0	0' 0.00' Dia: 0.00in G6 ELEVATION: 0.00'	OTAL DE	ртн:	46	.50'
BLANK CABING:			Fr	om: 0.0	To: BOREHOLE DIA: 8.00in	ATUM:			
Type:			-		Dia: 0.00in DATE STARTED: 12/03/97	ATE COM		1 ED:	7
BCREENS:			Fr	om:	To: LOGGED BY: Rob Hesse		-/ -	,0,0	
Type:			Si	ze:	Dia: CERTIFIED BY:				
					Beth Lamb,CEG				
Type: Bentonite G	rout			rom: (0.00' To: 46.50'				
Type:				rom:	To:				
SAMPLES				rom:	То:		- 1	- 1	
TIME COLLECTED TYPE / INTERVAL SAMPLE NUMBER	RECOVERY	BLOW COUNT	VAPOR READING (OVM)	DEPTH (feet)	MATERIAL DESCRIPTION		USCS CODE	LITHOLOGY	WELL CONSTRUCTION
				ļ	SANDY SILT (fill). Concrete, 10-12 inches. SANDY SILT, light olive brown (2.5Y 5/3), mottled with dark gray (2.5Y 4/1), (20,50,30,0), fine grained, micaceaus, slightly plastic, f moist. SANDY SILT, very dark grayish brown (2.5Y 3/2), (10,30,60,0), fine to medium grained sand, micaceaus, nonplastic, firm, moist. SAND, light olive brown (2.5Y 5/3), (0,20,80,0), fine to medium grained, poorly graded, medium dense, moist.		M		

Jan 20 15:57 56 geo\logs\B-19 dwg

Boring & Well Construction Log Erler & Kalinowski, Inc. B-19 Boring/Well Name: roject Neme: Webb roject Number: TIME COLLECTED BLOW COUNT VAPOR READING (OVM) SAMPLE NUMBER USCS CODE LITHOLOGY WELL CONSTRUCTION MATERIAL DESCRIPTION 13-ML14 - CLAYEY SILT, dark grayish brown (2.5Y 4/2), (30,60,10,0), moderate plasticity, low toughness, soft to firm, moist. 15-SANDY SILT, grayish brown (2.5Y 5/2), (10,60,30,0), fine grained B19-16 sand, micaceous, dense, moist. 17-18-19 20-B19-21 10 21-10 22-23-24 25-8 B19-26 8 26-27 -28-Page 2 of Jan 20 15:58 00 geo\logs\B-19 dwg

Foring/Well Name Project Name: Project Number:	•: <u>B</u> -	-19 ebb			uction Log	- Kalino	Erler & Kalinowski, Inc.				
TIME COLLECTED TYPE \ INTERVAL	SAMPLE NUMBER	RECOVERY	BLOW	VAPOR READING (OVM)		MATERIAL DESCRIPTION	USCS	ПТНОСОСУ	WELL CONSTRUCTION		
		111111111111111111111111111111111111111	4	4	30 - micaceous, slightly plas 31 - 32 - 33 - 34 -	wn (2.5Y 6/2), (0,15,85,0), fine to medium ed, dense, moist.			age 3 of 4		

Boring & Well Construction Log Erler & Kalinowski, Inc. B-19 Webb Project Name: Project Number: TIME BLOW COUNT VAPOR READING (OVM) TYPE \ INTERVAL SAMPLE NUMBER USCS CODE LITHOLOGY WELL CONSTRUCTION MATERIAL DESCRIPTION 0 Total Depth = 46.5 feet. 47 -48 49-50 51-52-

53-

54-

55-

56-

57-

58-

59-

60-

61-

62-

Appendix C

InterPhase Report on Soil Gas Sampling

Soil Gas Survey Jervis B. Webb Co. 5030 Firestone Boulevard Southgate, California

Project Number 97119

Submitted to:

Mr. Steve Miller Erler & Kalinowski, Inc. 2951 28th Street, Suite 1020 Santa Monica, California 90405

Submitted by:

InterPhase Environmental, Inc. 6200 Peachtree Street
Los Angeles, California 90040

December 17, 1997

6200 PEACHTREE STREET
LOS ANGELES-CA 90040
213-278-7700 800-457-3300
FAX 213-278-7707

INTERPHASE ENVIRONMENTAL, INC. SOIL GAS DOCUMENT REVIEW SHEET

Project Number:

97119

Project Name:

Soil Gas Survey

Jervis B. Webb, Co.

5030 Firestone Boulevard Southgate, California

Client:

Erler & Kalinowski, Inc. 2951 28th Street, Suite 1020 Santa Monica, California 90405

Lab ID: Phase 3

Analyzed by: John C. Tangeman, Project Chemist Reviewed by: Scott A. Norris, Senior Chemist

Report Prepared By:

540

Date: December 17, 1997

Scott A. Norris, Senior Chemist InterPhase Environmental, Inc.

Table of Contents

	PAGE
Introduction	
Background & Theory	1
Scope of Work	
Methods and Instrumentation	
Sample Collection Sample Analysis Decontamination of Equipment Standards Instrumentation	3 4 5 5 5
Quality Assurance / Quality Control	
Data Interpretation	

Appendix A: Summary of Analytical Results

Appendix B: Quality Control Summary

Appendix C: Field Logbook

Appendix D: Analyte Confirmation Sample Results

LIST OF TABLES

Table 1. Target Analytes

Table 2. Molecular Weights of Target Analytes

Introduction

This report presents the methods and results of a soil gas investigation performed December 1 & 2, 1997 at the Jervis B. Webb, Co. facility located at 5030 Firestone Boulevard in Southgate, California by InterPhase Environmental, Inc. (InterPhase) for Erler & Kalinowski, Inc. Soil gas sampling and analyses were performed in accordance with the California Regional Water Quality Control Board - Los Angeles Region (CRWQCB-LA) guidelines for active soil gas investigations under the Well Investigation Program (WIP) revised February 1997.

Background & Theory

Soil gas surveys consist of the sampling and analysis of the soil gases that reside in the pore space of the unsaturated zone above the water table. Because many common organic compounds and industrial solvents exhibit significant vapor pressures and relatively low solubility in water, their introduction into subsurface soils results in vapor phase permeation and transport. Should these chemicals reach the water table and travel with the groundwater, vapors will continue to emanate from the contaminated groundwater into overlying soil. Thus, organic contamination of the subsurface and, possibly, of groundwater can be detected by measuring the concentration of volatile organic compounds (VOCs) in the soil gas.

Whatever the source of the VOC in soil gas, its concentration is representative of soil contamination at the point of measurement. Volatile organic contaminants are present in the gas phase in unsaturated pore spaces, in the water contained in the unsaturated soils, and are adsorbed on the soil particles. The total soils contaminant concentration is the sum of the VOCs contained in the three phases divided by soil mass.

Within the soil volume examined by soil gas sampling, typically less than one cubic foot, equilibrium between the three phases is rapidly attained. The partitioning of the VOCs between gas, liquid and solid phases depends on both the soil properties and the chemical properties of the organic contaminants. Important soil parameters that affect the distribution of VOCs in three phases include the soil's natural and anthropogenic organic content, soil moisture, soil particle size and mineralogy, temperature, lithology, and heterogeneity. Thus, given the chemical properties of the VOC and either measurements or reasonable estimates of relevant soil parameters, soil-gas data can be used to calculate semi-quantitative estimates of soil contamination.

The major uncertainties in estimating soil concentration from soil gas concentration data are the organic and moisture content of the soils. Chemical properties of particular organic compounds are well known, (i.e., vapor pressure, solubility), and the other relevant soil parameters (i.e., bulk density, porosity) have relatively little effect on soil concentration estimates. Use of soil gas to infer concentrations of sources at distance (such as groundwater plumes) is necessarily much more qualitative. Soil gas data used in this manner are limited by the lack of information

1

regarding the soil parameters interposed between the source and sampling point. It is, therefore, generally not possible to quantitatively estimate groundwater concentrations from soil gas data collected at distance from the saturated interface. Away from source areas (i.e., underground storage tanks, surface spills, etc.) where only the groundwater is providing a significant soil gas concentration, soil gas can be an excellent relative indicator of groundwater contamination. The effectiveness of soil gas surveys to delineate groundwater contamination is variable, however, and depends on the depth to groundwater, contaminant concentration in the groundwater, distribution of air permeabilities in the unsaturated zone, and attenuation of the volatile organics by biodegradation or adsorption.

Scope of Work

This soil gas survey was December 1 & 2, 1997 at the Jervis B. Webb, Co. facility located at 5030 Firestone Boulevard in Southgate, California. InterPhase collected soil vapor samples at depths ranging from two (2) to five (5) feet below ground surface (bgs).

A total of thirty-seven (37) soil gas samples and three (3) duplicate soil gas samples were collected and analyzed on site for this project. This total does not include the two additional samples analyzed as part of the purge volume versus analyte concentration study performed at the first sampling location as required by the WIP. The 2, 4, and 8 purge volume samples collected at location SG-08-5' are labeled A, B, and C, respectively. As a result of this test, eight purge volumes were used for the remaining samples.

December 2, InterPhase sampled location SG-23-5' and collected a sample in a summa canister for analysis via EPA method T0-14 by an off site laboratory to fulfill the analyte confirmation requirement of WIP. The results of this analysis are included in Appendix D: Analyte Confirmation Sample Results.

All soil gas samples were analyzed on site for the VOCs listed in Table 1. The analytical results, in micrograms of contaminant per liter of soil gas (μ g/L), are included in *Appendix A: Summary of Analytical Results*.

Table 1. Target Analytes

trichlorofluoromethane (F 11)	dichlorodifluoromethane (F 12)
methylene chloride (CH ₂ Cl ₂)	1,1,2-trichlorotrifluoroethane (F 113)
1,1-dichloroethane (1,1-DCA)	vinyl chloride
chloroform (CHCl ₃)	chloroethane
1,1,1-trichloroethane (1,1,1-TCA)	1,1-dichloroethene (1,1-DCE)
carbon tetrachloride (CCl ₄)	cis-1,2-dichloroethene (c-1,2-DCE)
1,2-dichloroethane (1,2-DCA)	trans-1,2-dichloroethene (t-1,2-DCE)
trichloroethene (TCE)	benzene
1,1,2- trichloroethane (1,1,2-TCA)	toluene
tetrachloroethene (PCE)	ethylbenzene
1,1,1,2-tetrachloroethane (1,1,1,2-TCA)	m/p-xylenes
1,1,2,2-tetrachloroethane (1,1,2,2-TCA)	o-xylene

Methods and Instrumentation

Sample Collection

Soil Gas Sampling Apparatus

Soil gas probes were advanced using a Geoprobe® Direct Push Sampling Rig. InterPhase uses the "Post-Run" method of sampling. This means that sample tubing is not carried in the probe rod during probe driving, but rather inserted down the bore once the appropriate sample depth is reached. Sampling probe rod consists of 1 to 2-inch hardened steel. Gas samples are collected from the point holder adaptor mounted on the distal (deep) end of the sampling train. A stainless steel adapter is connected to ¼-inch clean, virgin polyethylene tubing, lowered down the bore of the drive probe string, and mated to the point holder adaptor. O-ring connections enable the system to deliver a vacuum-tight seal to assure that the sample is collected at the bottom. Hamilton or Dynatech 10-cc gas-tight, glass syringes are used to collect soil gas samples.

Pre-Sample Purge

To ensure a representative sample, discrete volumes of gas are purged to rid the tubing of atmospheric air and to allow subsurface air to enter. The volume of gas removed is determined by the volume of tubing employed and the investigative goals of the project. Unlike groundwater sampling, purging of a soil gas probe is designed to remove only the ambient air in the system.

InterPhase scientists have conducted field experiments to estimate the capture zone around the end of the soil gas sampling probe in order to demonstrate that vapor samples are not diluted with atmospheric air. Capture zone estimates are calculated for sandy soils and for silty or clayey soils in the following example:

Sampling Depth: 5 feet (152.4 cm)

Volume of sampling probe (1/4" polyethylene tubing): 5 mL per foot

Purge Volume: 75 mL (Approximately 3 probe volumes - 5' polyethylene tube)

Air porosity of sandy soils: 30% = 0.3Air porosity of silt or clay soils: 20% = 0.2

Volume of soil gas collected from sandy materials:

75 mL/0.3 = 250 mL

Volume of soil gas collected from silty or clayey materials:

75 mL/0.2 = 375 mL

Assuming isotropic vapor flow, the volume of soil gas collected may be described as a sphere of radius r with the origin at the tip of the soil gas probe. Therefore,

Sand: $(4/3)(\pi)(r^3) = 250 \text{ mL } (1\text{mL} = 1\text{cm}^3)$ r = 3.9 cm

Silt/Clay: $(4/3)(\pi)(r^3) = 375 \text{ mL}$ r = 4.5 cm

For this example, the purge volume of 75 mL ensures that three volumes of the sampling apparatus is evacuated (5' polyethylene tubing x 5 mL/foot x 3 purge volumes = 75 mL). The calculated radius of influence, approximately 4 cm, is substantially less than the distance to ground surface (152.4 cm), thus minimizing the potential for sample dilution with atmospheric air.

Sample Analysis

Gas chromatographic techniques were used to identify and measure concentrations of the various compounds. Two electron capture detectors (ECDs), which respond to halogenated organic compounds, are used to quantify most of the halogenated compounds. Each detector has a different column, with different polarity. The first column is a J&W Scientific DB-624. The second is a DB-1. During all analyses the columns are run through a temperature program starting at 55°C, hold for 1.2 minutes, ramp at 10°/minute to 150°C. A photoionization detector (PID), which responds to aromatic organic compounds and some halogenated organic compounds is used to quantify the remaining analytes. During all analyses this column was run through a temperature program starting at 60°C, hold for 1.2 minutes, ramp at 10°/minute to 150°C.

Gaseous standards were used for identification and quantitative measurement of target analytes. The calibration standards were prepared by InterPhase Environmental, Inc., or purchased from Scott Specialty Gases.

Decontamination of Equipment

Sampling equipment is decontaminated by methods consistent with the equipment's use. Sample tubing is used for one sampling event and discarded. Reusable steel parts including adaptors and point holders are cleaned by baking in an oven at 100°C. Syringes are cleaned with Alconox and water and then placed in an oven and heated. Methanol or hexane rinses that can carry contamination, contribute to background, and potentially trap VOCs, are not employed.

Separate storage areas are provided for used and cleaned equipment. The probe rod and drive points are stored in clean storage racks on the sampling rigs. Care is taken with the rods and points to eliminate both soil-surface and cross-hole contamination. No equipment that is in contact with soil gas is used or reused without being decontaminated.

Standards

Neat reagent-grade compounds were used for preparation of stock liquid standards. The stock standard liquid mixture was prepared by adding the desired mass of each compound of interest to a methanol solution. This standard solution is then sealed in single use glass ampules.

For calibration, an ampule was broken open and an aliquot was added to a sealed, nitrogen filled container and heated until the methanol evaporates. This standard gas mixture was then injected into the gas chromatograph (GC) and analyzed to determine the instrument response to each analyte.

Instrumentation

The make and model of the equipment used in the mobile laboratory to perform on-site analyses include:

Varian 3400 Gas Chromatograph; Hewlett-Packard 5890 Gas Chromatograph; Varian Electron Capture Detectors; OI Instruments Photoionization Detector; J&W Scientific DB-624, 30m Megabore Column; J&W Scientific DB-1, 30m Megabore Column; Scientific Software PC-Based Data System.

Quality Assurance / Quality Control

Quality control and quality assurance are achieved through strict laboratory protocol. A system blank was analyzed daily to demonstrate absence of interference in the sampling and analytical systems. An ambient air sample was also analyzed each day to monitor for any possible interference. The ambient air results also help establish background levels and on-site personnel safety.

A three-point curve was generated during the initial calibration of the gas chromatograph. A midrange calibration check is performed daily to verify instrument response. As required by the WIP QA/QC protocols, the percent relative standard deviation (%RSD) of the mid-point continuing calibration check should be less than 15% except for the freons, vinyl chloride and chloroethane, which must be within 25%.

Response Factors

When the external standard method is used, the computer-integration system calculates response factors (RF) as follows:

$$RF = C/A$$

where

C = concentration of analyte in the calibration standard, $\mu g/L$

A = area of analyte to be measured

The concentration of the unknowns is determined by comparing the peak area of the unknowns to the peak area of the external standards as follows:

$$C = (A)(RF)$$

where

 $C = concentration of the analyte in sample in <math>\mu g/L$

RF = relative average response factor

A = area of analyte being measured

The practical quantitation limits of reported detection ranged from 0.01 to 1.0 micrograms per liter (μ g/L) for all compounds. Higher reporting limits may result from analysis of high concentration samples due to the necessity of using a reduced sample volume or dilutions for analysis. Results of analyses are reported to the nearest μ g/L in two significant figures.

Data Interpretation

Vapor-phase diffusion is the prevailing mechanism by which soil gas analytes are transported in the subsurface. The presence of an analyte in soil gas is a function of the phase, location and concentration of the source, physical properties of the analyte, and the media through which transport occurs. The site-specific variability among soil properties profoundly affect vapor-phase diffusion and must be considered in the interpretation of analyte distribution in the soil gas. Among these soil properties are: organic content, soil moisture, soil particle size and mineralogy, and air-filled porosity. Anomalies in the spatial distribution (vertically or laterally) of analyte concentrations in soil gas samples should be noted.

Although isoconcentration contours of soil gas data can be plotted on site maps, it should be emphasized that these isotherms are only representative of the contaminant distribution in soil vapor. Isoconcentration contours for compounds in soil or groundwater may differ in extent and orientation from those delineated in soil gas. Inherent assumptions that are infrequently discussed in preparing soil gas isotherms are:

- Soil gas concentration data are adequate to describe the spatial distribution of contaminants underlying the site
- Vertical anisotropy is either insignificant or can be described by existing site data
- Vapor barriers that may impede the gaseous diffusion of analytes are either nonexistent or do not vary over the investigation site
- Soil texture, water content, and air-filled porosity are spatially uniform over the site In cases where data values in parts per million by volume (ppm_v) are desired, the conversion of soil gas concentrations from $\mu g/L$ (gas) to ppm_v can be achieved with the following equation.

$$C_{ppm_v} = \frac{\left(C_{\mu g/L}\right)(24.1)}{(mw)(P)}$$

Where;

C_{ppm}, soil gas concentration in ppm_ν
 C_{μg/L} soil gas concentration in μg/L (gas)
 24.1 molar volume at normal room temperature (70°F) in (L)(atm)/mole mw molecular weight in grams/mole
 P pressure in atmospheres (typically assumed to be 1 atm)

Using toluene, which has a molecular weight of 92.14, as an example: at normal temperature and one atmosphere of pressure, 1 μ g/L of toluene would be equivalent to 0.26 ppm_v.

Table 2 presents the molecular weights that may be used in the above equation to calculate the ppm_v values and reporting limits for the target analytes.

Table 2. Molecular Weights of Target Analytes

Analytes	Molecular Weight
F-12	120.91
F-113	187.38
F-11	137.38
CH ₂ Cl ₂	84.94
1,1-DCA & 1,2-DCA	98.96
CHCl ₃	119.39
1,1,1-TCA & 1,1,2-TCA	133.41
CCl ₄	153.82
TCE	131.39
PCE	165.83
1,1,1,2-TCA & 1,1,2,2-TCA	167.85
vinyl chloride	62.5
chloroethane	64.52
1,1-DCE & c-1,2-DCE & t-1,2-DCE	96.95
benzene	78.12
toluene	92.15
ethylbenzene & xylenes	106.17

Results

Appendix A: Summary of Analytical Results presents the measured concentrations of all samples, blanks, and duplicates analyzed on site during this investigation. Concentrations are reported in micrograms per liter $(\mu g/L)$ of soil gas.

Due to the wide range of concentrations of TCE and PCE often found in soil gas samples, InterPhase uses two different detectors to quantify these analytes. The ECD is more sensitive and is typically used for low levels of these analytes. When either TCE or PCE is detected at concentrations that exceed the calibrated linear range of the ECD, the PID may be used for quantification rather than diluting and reanalyzing the sample. Diluting samples means fewer samples can be analyzed for a given project and the reporting limits for certain analytes are higher than the 1 μ g/L specified in WIP.

All calibration and QA/QC measures are applied to both detectors. When TCE and PCE are detected, a numerical value is entered in the Summary of Analytical Results in the appropriate row. A value of NU (not used) is entered in the row next to the detector that was not used to quantify that analyte for that specific analysis.

Appendix B: Quality Control Summary presents the results of the daily mid-level continuing calibration verification standards.

The results of the analyte confirmation sample collected at location SG-23-5' are included in Appendix D: Analyte Confirmation Sample Results.

Analyte confirmation analysis as defined by the WIP Guidelines, is meant strictly to confirm the identification of analytes made by a field laboratory (WIP, Section 3.11). Results from the analysis of the confirmation sample collected at SG-23-5' indicate both laboratories were in agreement with the compounds identified in this sample.

InterPhase and EAS each reported 1,1,1-trichloroethane (111-TCA), trichloroethene (TCE), and tetrachloroethene (PCE) at this sample location.

EAS detected dichloromethane (methylene chloride, CH_2Cl_2) toluene, styrene, and xylenes in this sample. Styrene was not among the target analytes for the mobile laboratory for this project. The toluene and xylene concentrations were below InterPhase's reporting limits for these compounds.

This data indicates that the confirmational sample achieved it's goal of confirming the compound identification of InterPhase's mobile laboratory. Though not a specific goal of this test, the numerical results can be compared. To convert the EAS results from $\mu g/m^3$ to $\mu g/L$, divide by 1000. When this is done, the results show InterPhase's results differ from EAS's by the following ratios: 111-TCA (low by a factor of 4.2), TCE (low by a factor of 1.4), and PCE (low by a factor of 2.7). The immediate reasons for the differences are not known, but may be attributable to one or more of the following: chemical and physical properties of the specific analytes, chemical and physical properties of the subsurface, differences in sample collection methods, sample volume, sampling rate, applied vacuum during sampling, sample holding time and analytical methods.

Appendix A:

Summary of Analytical Results

Page 1 of 5

Summary of Analytical Results Lab ID: Phase 3

Project #: 97119

Client: Erler & Kalinowski

Southgate, California Site: 5030 Firestone Blvd.

SG4-5' 12/1/97 10:15 10:18 012 50/10/500	(μg/L) <0.01 <1 <1 <1 <0.01 <0.01 0.13 <0.01 <1 <1 <0.01 <1 <0.01 <1 <0.01 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	3	33
SG-3-5' 12/1/97 9:57 9:58 011 50/10/300	(µg/L) <0.01 <0.01 <1 <1 <1 <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	7 % ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬ ¬	N
SG-2-5' 12/1/97 9:35 9:36 010 50/10/200	(μg/L) <0.01 <1 <1 <0.01 0.50 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	7 🕏 ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ 🥫	N
SG-1-5' 12/1/97 9:12 9:15 009 50/10/100	(μg/L) <0.01 <1 <1 0.055 0.05 <0.01 <1 <1	7 B v v v v v v v v 5	M 107 & ∆ ∆ ∆ ∆ ∆ ∆ M
SG-8C-5' 12/1/97 8:44 8:46 008 50/10/500	(µg/L) <0.01 <1 <1 <0.01 0.59 <0.01 <1.5 4.5	· % ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ∑	? ▽ N ▽ ▽ ▽ □ = 8 6
SG-8B-5' 12/1/97 8:31 8:31 007 50/10/500	(µg/L) <0.01 <1 <1 <0.01 <1 <0.01 <0.01 <0.01 <0.001 <0.05 <0.001 <0.05 <0.001 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <		83
SG-8A-5' 12/1/97 8:11 8:12 006 50/10/500	(μg/L) <0.01 <0.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		
Ambient Air 12/1/97 NA 7:58 005	(µg/L) <0.01 <1 <1 <1 <0.01 <0.01 <0.01 <0.01 <1 <1 <1 <1 <1 <0.01 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	0.00 0.00	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
System / Syringe Blank 12/1/97 NA 7:05 001	(µg/L) 0.01 0.01 0.01 0.01 0.01 0.01	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	⊽ ⊽ ⊽ ⊽ ▼ X X X
	KI (min) 1.74 2.28 2.69 3.28 3.44 3.58 4.23	5.98 6.99 9.34 2.06 3.65 1.79 2.33 2.77 4.10	5.75 6.52 7.27 7.40 7.78 4.217 4.542 6.25
02.PID, µL)	ECD1 ECD1 ECD1 ECD1 ECD1 ECD1 ECD1	ECD1 ECD1 ECD2 ECD2 ECD2 PID PID PID PID PID PID PID PID PID PID	PID PID PID PID ECD ECD
Sample ID: Date: Time Collected: Time Analyzed: Run #: Volume Analyzed (ECDI/ECD2/PID, µL): Second Injection Volume	methylene chloride (CH ₂ Cl ₂) 1.1-dichloroethane (11-DCA) chloroform (CHCl ₃) 1.1.1-trichloroethane (111-TCA) carbon tetrachloride (CCL ₃) 1.2.1-dichloroethane (12-DCA) urchloroethane (12-DCA) urchloroethane (12-DCA)	In 1.1.2-tetrachloroethane (PCE) 1.1.1.2-tetrachloroethane (1112-TCA) 1.1.2.2-tetrachloroethane (1122-TCA) dichlorodifluoromethane (F-12) 1.1.2-trochlorotifluoroethane (F-13) vinyl chloride chloroethane 1.1-dichloroethene (11-DCE) trans-1.2-dichloroethene (c-12-DCE) sis-1.2-dichloroethene (c-12-DCE) benzene trichloroethene (TCE)	toluene tetrachloroethene (PCE) ethylbenzene m/p-xylenes o-xylene % Surrogate 1 Recovery % Surrogate 2 Recovery % Surrogate 3 Recovery

Page 2 of 5

Summary of Analytical Results Lab ID: Phase 3

Client: Erler & Kalinowski Project #: 97119

Site: 5030 Firestone Blvd. Southgate, California

SG-18-5' SG-16-5' 12/1/97 12/1/97 14:05 14:20 14:05 021 022 00/10/500 50/10/500	(µg/L) (µg/L) (0.0g/L)	
SG-11-5' S 12/1/97 13:41 13:42 020 50/10/500 \$6	(Hg/L)	
SG-12-5' 12/1/97 13:22 13:25 019 \$0/10/500	(J. 6. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	110 109 104
SG-13-5' 12/1/97 13:06 13:09 018 50/10/500	(J891) 10.00 1	114 116 91
SG-10-5' 12/1/97 11:42 11:44 017 50/10/200	(Hg/L) (117 92 MI
SG-7-5' 12/1/97 11:23 11:25 016	(184) 0.00	95 103
SG-6-5' 12/1/97 11:05 11:07 015	(18g) (1.0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	108 109 122
duplicate SG-5-5' 12/1/97 10:35 10:53 014 50/10/500	(i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	122 85 102
SG-5-5' 12/1/97 10:35 10:38 013 50/10/500	(1987) 10.00 1	117 88 112
<u>::</u>	RT (min) 1.74 2.28 2.69 3.28 3.44 3.58 3.72 4.23 5.79 5.98 6.99 9.34 2.06 3.65 1.79 2.33 2.77 3.22 4.10 4.63 5.75 6.52	4.217 4.542 6.25
D2/PID, µL)	ECD1 ECD1 ECD1 ECD1 ECD1 ECD1 ECD1 ECD1	PID ECD ECD
Sample ID: Date: Time Collected: Time Analyzed: Run #: Volume Analyzed (ECD1/ECD2/PID, µL): Second Injection Volume	Compound Name trichlorofluoromethane (F-11) methylene chloride (CH ₂ Cl ₂) 1,1-dichloroethane (11-DCA) ehloroform (CHCl ₃) 1,1,1-trichloroethane (11-TCA) carbon tetrachloroethane (12-DCA) trichloroethene (TCE) 1,1,2-dichloroethane (112-TCA) tetrachloroethene (PCE) 1,1,2-tetrachloroethane (112-TCA) dichloroethene (PCE) 1,1,2-tetrachloroethane (112-TCA) dichloroethene (TCE) 1,1,2-tetrachloroethane (1-12) 1,1,2-tetrachloroethane (1-12) trans-1,2-dichloroethene (1-1-DCE) trans-1,2-dichloroethene (1-1-DCE) trans-1,2-dichloroethene (1-1-DCE) benzene trichloroethene (TCE) toluene tetrachloroethene (PCE) ethylbenzene m/p-xylenes o-xylene	% Surrogate 1 Recovery % Surrogate 2 Recovery % Surrogate 3 Recovery

Summary of Analytical Results Lab ID: Phase 3

Project #: 97119 Client: Erler & Kalinowski

Site: 5030 Firestone Blvd. Southgate, California

March Marc
7.27
7.27 <
7.40 <1
7.78 <1
4.217 120 113 114 114 118 114 117 120 4.542 99 116 110 95 100 92 112 93 6.25 91 MI MI 113 MI 120 84
4.217 120 113 114 114 118 117 120 4.542 99 116 110 95 100 92 112 93 6.25 91 MI MI MI 113 MI 120 84
6.25 91 Mi Mi 113 Mi 120 84

Page 4 of 5

Summary of Analytical Results Lab ID: Phase 3

Client: Erler & Kalinowski Project #: 97119

Site: 5030 Firestone Blvd. Southgate, California

Page 5 of 5

Summary of Analytical Results Lab ID: Phase 3

Project #: 97119

Client: Erler & Kalinowski

Site: 5030 Firestone Blvd. Southgate, California

•		SG-23-5' 12/2/97 10:45	SG-31-3' 12/2/97 11:25	SG-33-5' 12/2/97 12:28	SG-34-5' 12/2/97 12:45	SG-35-5' 12/2/97 13:01	SG-36-5' 12/2/97 13:15	SG-37-5' 12/2/97 13-35	SG-29-2' 12/2/97 13:50
(hgL)		10:53	11:29	12:30	12:47	13:03	13:20	13:37	13:51
(14g/L)	Volume Analyzed (ECD1/ECD2/PID, µL) : Second Injection Volume	20/10/200	50/10/500	50/10/500	50/10/500	049 50/10/500	050 50/10/500	051 50/10/500	052 50/10/500
Color Colo	Detector RT (min)	(µg/L)	(ug/L)	(ug/L)	(Toll)	(1/611)	(L /an)	()	V 6 - 117
Color	ECD1 1.74	<0.01	<0.01	0.032	(1.0°)	(187) 000	(#8/L)	(F8/1)	(#8/L)
Color Colo		⊽	⊽	⊽	∀	V	; <u>-</u>	; } ∇	
\$\limins_{0.01} \text{Cool} \text{Cool} \text{Cool} \text{Cool} \text{Cool}		⊽	⊽	⊽	\	. △	. △	7 ⊽	7 7
\$\int 0.18 \ \text{0.24} \ \text{0.01} \ \text{0.18} \ \text{0.02} \ \text{0.01} \		<0.01	<0.01	<0.01	<0.01	<0.01	0.058	, 10 ⁰ 0>	100>
\$\int 0.01		0.13	<0.01	0.18	0.26	0.12	0.24	0.18	0.020
0.01 0.41 2.4 3.6 2.5 1.5 0.021 3.2 3.6 2.5		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
\$\limits_{0.01} \text{0.41} \text{2.4} \text{3.6} \text{0.021} \text{3.2} \text{6.3} \text{1.9} \text{3.0} \text{5.0} \text{0.021} \text{3.2} \text{6.3} \text{1.9} \text{3.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \text{5.0} \qu		⊽	⊽	⊽	⊽	⊽	⊽	⊽	√
0.021 3.2 6.3 1.9 3.0 2.0 0.021 3.2 6.3 1.9 3.0 2.0 0.021 3.2 6.3 1.9 3.0 2.0 0.021 3.2 6.3 1.9 3.0 2.0 0.021 3.2 6.3 1.9 3.0 2.0 0.021 3.2 6.3 1.9 3.0 2.0 0.021 3.2 6.3 1.9 2.0 0.021 3.2 6.3 1.9 2.0 0.021 3.2 6.3 1.9 2.0 0.021 3.2 6.3 1.9 2.0 0.021 3.2 6.3 1.9 2.0 0.021 3.3 1.9 2.0		1.2	<0.01	0.41	2.4	3.6	25	12	0.020
0.021 3.2 6.3 1.9 3.0 2.0		⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽
		1.3	0.021	3.2	6.3	1.9	3.0	2.0	0.036
11		⊽	∇	⊽	⊽	∵	⊽	7	. ▽
1.2		⊽	▽	⊽	⊽	∵	⊽	⊽	∵ ⊽
C C C C C C C C C C		⊽	₩	1.2	⊽	$\overline{\lor}$	⊽	⊽	. △
	3.65	⊽	⊽	▽	⊽	⊽	⊽	⊽	~
C C C C C C C C C		$\overline{\lor}$	⊽	⊽	⊽	⊽	⊽	⊽	7
C C C C C C C C		⊽	⊽	⊽	⊽	⊽	⊽	7	⊽
C C C C C C C C C	2.33	⊽	⊽	⊽	⊽	⊽	⊽	' ⊽	. △
C C C C C C C C C C C	2.77	⊽	⊽	⊽	⊽	⊽	⊽	⊽	√ √
C C C C C NU	3.22	▽	⊽	⊽	⊽	⊽	⊽	⊽	~
NU	4.10	⊽ :	⊽	⊽	⊽	⊽	⊽	⊽	⊽
C C C C C C C C C C C C C	4.63	N N	O N	N N	N	NO	N	NO	N
NU	5.75	⊽	⊽	⊽	7	7	⊽	⊽	$\overline{\vee}$
c c c c c c c c c c c c c		N N	DN N	N	N	N	NO	N	N.
c c c c c c c c c c c c c	7.27	⊽	⊽	⊽	⊽	⊽	⊽	⊽	: ⊽
<1	7.40	⊽	⊽	⊽	⊽	⊽	~	. △	₹ ⊽
117 104 121 106 109 113 72 81 88 92 90 110 103 104 86 87 99 110	PID 7.78	⊽	⊽	⊽	$\overline{\lor}$	⊽	$\overline{\nabla}$	∵ ⊽	. △
72 81 88 92 90 110 103 104 86 87 99 110	PID 4.217	112	117	101	121	106	601	113	117
103 104 86 87 99 110		82	72	81	88	92	60	011	105
	ECD 6.25	96	103	101	98	87	06	21.	6 -

Appendix B:

Quality Control Summary

QUALITY CONTROL SUMMARY

Date: December 1, 1997

Project #: 97119 Chemist: JCT Machine ID: Phase 3

					MID-PC	INT CALIE	RATION C	HECK	·
				C		Information			
		COLUMN	STDcon				mean	1	ACC
ANALYTE	DETECTOR	TYPE/SERIAL#	(µg/L)	μL	area	rf	rf	% Dif	1
F-11	ECD	DB-624/1213537	0.05	100	4528090	1.10E-06	1.14E-06	3%	25%
CH ₂ Cl ₂	ECD	DB-624/1213537	26.1	100	2185047	1.19E-03	1.38E-03	13%	15%
1,1-DCA	ECD	DB-624/1213537	30.9	100	1941130	1.59E-03	1.65E-03	4%	15%
CHCI ₃	ECD	DB-624/1213537	0.699	100	1231139	5.68E-05	5.05E-05	12%	15%
1,1,1-TCA	ECD	DB-624/1213537	0.076	100	1541568	4.93E-06	4.73E-06	4%	15%
CCl₄	ECD	DB-624/1213537	0.0315	100	4393803	7.17E-07	6.52E-07	10%	15%
1,2-DCA	ECD	DB-624/1213537	25.8	100	2287637	1.13E-03	1.17E-03	4%	15%
TCE	ECD	DB-624/1213537	0.447	100	1194218	3.74E-05	4.25E-05	12%	15%
CH_2Br_2 (s)	ECD	DB-624/1213537	0.118	100	1325054	8.91E-06	9.03E-06	1%	25%
1,1,2-TCA	ECD	DB-624/1213537	5.6	100	2052615	2.73E-04	2.71E-04	1%	15%
PCE	ECD	DB-624/1213537	0.123	100	1723055	7.14E-06	7.67E-06	7%	15%
CHBr ₂ Cl (s)	ECD	DB-624/1213537	0.122	100	1336995	9.12E-06	8.28E-06	10%	25%
1,1,1,2-TCA	ECD	DB-624/1213537	0.0593	100	1057253	5.61E-06	5.70E-06	2%	15%
1,1,2,2-TCA	ECD	DB-624/1213537	6.2	20	213598	5.81E-04	6.74E-04	14%	15%
F-12	ECD	DB-1/4326342	0.49	100	5329340	9.19E-06	1.08E-05	15%	25%
F-113	ECD	DB-1/4326342	0.7	50	9428092	3.71E-06	4.67E-06	21%	25%
vinyl chloride	PID	DB-1/1251035	25	100	1831709	1.36E-03	1.48E-03	8%	25%
chloroethane	PID	DB-1/1251035	102	100	3899445	2.62E-03	2.78E-03	6%	25%
1,1-DCE	PID	DB-1/1251035	39.4	100	4307228	9.15E-04	9.07E-04	1%	15%
t-1,2-DCE	PID	DB-1/1251035	20	100	4970188	4.02E-04	4.13E-04	3%	15%
c-1,2-DCE	PID	DB-1/1251035	30	100	3674523	8.16E-04	9.00E-04	9%	15%
benzene	PID	DB-1/1251035	21.4	100	5243869	4.08E-04	4.39E-04	7%	15%
fluorobenzene (s)	PID	DB-1/1251035	24.2	100	4380092	5.52E-04	5.83E-04	5%	25%
TCE	PID	DB-1/1251035	29.9	100	3811540	7.84E-04	7.69E-04	2%	15%
toluene	PID	DB-1/1251035	18.8	100	4132068	4.55E-04	4.88E-04	7%	15%
PCE	PID	DB-1/1251035	46.2	100	3784128	1.22E-03	1.13E-03	8%	15%
ethylbenzene		DB-1/1251035	22.2	100	3497458	6.35E-04	6.64E-04	4%	15%
m,p-xylenes	PID	DB-1/1251035	22.2	100	4509693	4.92E-04	5.04E-04	2%	15%
o-xylene	PID	DB-1/1251035		100	3337132	6.71E-04	5.97E-04	12%	15%

QUALITY CONTROL SUMMARY

Date: December 2, 1997

Project #: 97119 Chemist: JCT Machine ID: Phase 3

					MID-PO	INT CALIE	BRATION C	HECK	
						Information			nse
		COLUMN	STDcone				mean	<u> </u>	ACC
ANALYTE	DETECTOR	TYPE/SERIAL#	(μg/L)	μL	area	rf	rf	% Dif	
F-11	ECD	DB-624/1213537	0.05	100	4645106	1.08E-06	1.14E-06		25%
CH ₂ Cl ₂	ECD	DB-624/1213537	26.1	100	1938181	1.35E-03	1.38E-03	2%	15%
1,1-DCA	ECD	DB-624/1213537	30.9	100	2075261	1.49E-03	1.65E-03	10%	15%
CHCl ₃	ECD	DB-624/1213537	0.699	100	1306719	5.35E-05	5.05E-05	6%	15%
1,1,1-TCA	ECD	DB-624/1213537	0.076	100	1487775	5.11E-06	4.73E-06	8%	15%
CCI ₄	ECD	DB-624/1213537	0.0315	100	5395598	5.84E-07	6.52E-07	10%	15%
1,2-DCA	ECD	DB-624/1213537	25.8	100	2551244	1.01E-03	1.17E-03	14%	15%
TCE	ECD	DB-624/1213537	0.447	100	1205640	3.71E-05	4.25E-05	13%	15%
CH_2Br_2 (s)	ECD	DB-624/1213537	0.118	100	1236819	9.54E-06	9.03E-06	6%	25%
1,1,2-TCA	ECD	DB-624/1213537	5.6	100	2266172	2.47E-04	2.71E-04	9%	15%
PCE	ECD	DB-624/1213537	0.123	100	1782327	6.90E-06	7.67E-06	10%	15%
CHBr ₂ Cl (s)	ECD	DB-624/1213537	0.122	100	1880328	6.49E-06	8.28E-06	22%	25%
1,1,1,2-TCA	ECD	DB-624/1213537	0.0593	100	1080370	5.49E-06	5.70E-06	4%	15%
1,1,2,2-TCA	ECD	DB-624/1213537	6.2	50	398279	7.78E-04	6.74E-04	15%	15%
F-12	ECD	DB-1/4326342	0.49	150	7468526	9.84E-06	1.08E-05	9%	25%
F-113	ECD	DB-1/4326342	0.7	30	4810667	4.37E-06	4.67E-06	7%	25%
vinyl chloride	PID	DB-1/1251035	25	100	1717682	1.46E-03	1.48E-03	2%	25%
chloroethane	PID	DB-1/1251035	102	100	3591743	2.84E-03	2.78E-03	2%	25%
1,1-DCE	PID	DB-1/1251035	39.4	100	4356725	9.04E-04	9.07E-04	0%	15%
t-1,2-DCE	PID	DB-1/1251035	20	100	4873631	4.10E-04	4.13E-04	1%	15%
c-1,2-DCE	PID	DB-1/1251035	30	100	3678915	8.15E-04	9.00E-04	9%	15%
benzene	PID	DB-1/1251035	21.4	100	5203032	4.11E-04	4.39E-04	6%	15%
fluorobenzene (s)	PID	DB-1/1251035	24.2	100	4206616	5.75E-04	5.83E-04	1%	25%
TCE	PID	DB-1/1251035	29.9	100	3945010	7.58E-04	7.69E-04	1%	15%
toluene	PID	DB-1/1251035	18.8	100	4278428	4.39E-04	4.88E-04	10%	15%
PCE	PID	DB-1/1251035	46.2	100	4063022	1.14E-03	1.13E-03	1%	15%
ethylbenzene		DB-1/1251035	22.2	100	3566837	6.22E-04	6.64E-04	6%	15%
m,p-xylenes	PID	DB-1/1251035	22.2	100	4299982	5.16E-04	5.04E-04	2%	15%
o-xylene	PID	DB-1/1251035		100	3455331	6.48E-04	5.97E-04	9%	15%

Appendix C:

Field Logbooks

INTERPHASE

ENVIRONMENTAL CHEMISTRY SPECIALISTS

6200 PEACHTREE STREET
LOS ANGELES, CA 90040
213•278•7700 800•457•3300
FAX 213•278•7707

InterPhase Project Logbook

Project No.:	97119
Client:	ERLER & KALINOWSKI
Site Name:	TERVIS B. WESB CO.
Location:	9301 PAYO SOUTHGATE CA
Dates Worked:	12-1-97 -> 12/2

Logbook #

Project S	umma	ry	
			+ 2 P.V.T.
Total Number of Soil Gas Samples Collec-	ted	37	+ 3 dup
Total Number of Soil Samples Collected		B	
Total Number of Groundwater Samples C	ollected	D	
List of Materials Lost or Damaged on Pro	ject		
Expendable Materials Used on Project:	r		
Expendable Drive Points (#):	oing (ft):	185	
Bentonite (# bags): 3	/Asphalt Pat + ź Asph	ch (# bags): (<i>/</i> /	
Other Expendables:	Rental 1	Equipement:	
	0		
1 Suma for TO-14	of Interes	t	
·			

Project Backgro	und Information
Project No.: 97-119	Phase No.: 3
	Location: SouthGATE, CA
Site Name: TERVIS 13. WEBB CO. Dates Worked: 12-1-97 ->	
Client Name and Address:	Client Field Representative(s) Name(s):
Epick J Kaliwowski	ROB
ESCURE & PROMISE SUITE 1020	1703
2951 2874 STARRT, SUITE 1020 SANTA MONICA, CA 90405	
Client Telephone: 316 - 314 -8855	Client FAX:
Crew	
Chemist: TAUCEMAN	Technician: FAVERO
Additional information to be included with data report a	t Client's request:
D of Investigation:	
Purpose of Investigation: to determine if there are	my off- site sources
Target VOCs:	
1.1.0	
W1P	
Groundwater Information (if available):	
	The state of the s
Depth to Groundwater: ~ 40'-50'	Direction of Flow:
Possible/Known Source(s) of Contamination (if availal — RIVOT MAN-FACTURE	Cizir FIZK
- RIVOT MAUNTACTUREN	Co. p
	v. ata\
Subsurface Conditions (Soil Type, Subsurface Geolog	y, etc.,
	Other Site Name and Location, Scale (both ba
If maps are required, draw to scale and include: Proje	ect Number, Client, Site Name and Location, Scale (both ba
and inch equivalent), North Arrow (approximate), Sa If maps are supplied by client, check for accuracy	Inpling Locations and Publication
If maps are supplied by client, check for accuracy	

Daily Summary

Date: 12-1-97		Project No.: 97119
Client: ERLER		
Weather: SUNNY	H-64 65	Low So
Field Hours Time on Site: 0700		Lunch Hours: / Hora
Time off Site: 1715.		Downtime Hours:
Calibration		
Start Calibration: Stop Calibration: Total Calibration Hours:	0700	
Sample Summary Total Syringe/System Blanks	>2 + PLR65	Total Ambient Air Blanks: Total Soil Samples: Other (specify): Decon Procedures Used: — Discara Trainc f Ranci Pr. Holder
Expendables		
Expendable Drive Tips Used Bentonite Used (# bags): Asphalt Used (# bags):	1: 23 2 BACS YU	Poly Tubing (ft.) Used: 100 (Cement Used (# bags):
List Equipment Lost or Dar	naged — Nonk	
Rental Equipment Used:	- Nonk	

	119
Notes	
Date: 12-1-97 Client: ERLER	Project No.: 97119
Time: Event / Notes:	

* 8 purge volumes is the optimel purge volume

Sampling Log

	Date:	12-1-97				Project No.: 97/19
	Client	ERLER	·			Location: South Gang
	-	c	Depth	SG Purge Volume	Sample	Note and Observations
	Time	Sample ID	(ft)	(cc)	Туре	Note and Observations
	911	56-8A	s'	60	56	
;	४३।	56-8B	5'	120	56	
¥	844	56-8 C	51	240	56	
	0912	56-1	5'	240	56	NEXT TO CLANIFIEL
	0935	56-2	5'	240	56	
	2957	56-3	5'	240	56	
	1015	56-4	5'	240	56	
	1035	56-5	٤'	240	56	DUPLICATE
	1105	56-6	5 '	240	56	
	1123	5C-7	5'	240	50	
	1142	\$5-16	5'	240	56	INS.AS B.DG.
	12:0	5-1300		och		
	1306	56-13	5'	240	26	· · · · · · · · · · · · · · · · · · ·
	1322	5G-12	5'	240	56	C -1
	1341	56-11	5'	240	56	Hana Pennoss
	1405	56-18	5'	240	56	
	1420	56-16	5'	240	56	
	1437	- 56-15	5'	240	56	
	1459	56.9	51	240	56	
	1514	56-22	5'	240	56	the state of the s
	1543	56-21	s'	240	56	LOST POINT of FILER HOLDER WOLL WANT BACK DOWN HOLE

Sampling Log

					Г	
·	Date:	12-1-9-	<i>Ŧ</i>			Project No.: 97119
	Time	Sample ID	Depth (ft)	SG Purge Volume (cc)	Sample Type	Note and Observations
	1602	56-17	5'.	240	26	
	1618	SG-14	5'	240	SG	
	1635	56-19	5'	240	56	
	1652	56-20	5'	240	56	
171	Ds	SG-17 SG-14 SG-19 SG-20 PART S.	15			
, , ,					<u> </u>	
				<u> </u>		
		• :				
				<u> </u>		
						·
						·

Daily Summary

Date: 12-2-97		Project No.: 97119
Client: ERLER		
Weather:		
Field Hours		
Time on Site: 3700		Lunch Hours: 40 minutes
Time off Site:		Downtime Hours:
1430		Standby Hours:
Calibration		
Start Calibration:	0700	
Stop Calibration:	0800	
Total Calibration Hours:	1.0)
Sample Summary Total Syringe/System Blanks	: 1	Total Ambient Air Blanks:
Total Soil Gas Samples:	15	Total Soil Samples:
Total Groundwater Samples:		Other (specify):
Total Groundwater Bumpies.		
Backfill Procedures Used:		Decon Procedures Used:
1 To 1		- DISCARD TURING
- BENTONITE	•	- BAKE
		- 13442
Expendables		
Expendable Drive Tips Used	1: 20	Poly Tubing (ft.) Used: 85
Bentonite Used (# bags):	1	Cement Used (# bags): /
Asphalt Used (# bags):	1/4	
715phan 0000 (000).	/1	
List Equipment Lost or Dan	naged NoNE	
Rental Equipment Used:	North	

Time: Event / Notes:

Sampling Log

•	•					
Dat	e:	12-2-9				Project No.: 97-119
Clie	nt:	. ERG	R			Location: Southbark
Tim	ie l	Sample ID	Depth (ft)	SG Purge Volume (cc)	Sample Type	Note and Observations
	Î	56-26	5'	240	56	IN ELASS, duplicate
08:	38	56-25	5'	240	56	" HAND POUNDED
09	05	5G-27	5'	240		ASPHALT
09	24	96-32	5'	240	56	1,
29	38	56-28	5'	240	56	REFUSAL AT 21. TRIED 3 TIME
		56-29	4	1.	٠	REFUSAL AT 3'
		56-30	3'	160		
	٠,	SG-24	5'	240	56	REFUSAL AT 1: NOUS ~1 FT AM SUMMA CANUSTON I.Q.: 791
	t	56-27	3'	160	56	ASPHALT
		56-31 1220 —	 	1.		
	_	56-33	1 ./	240	56	Asphar
		56-34	5	240	56	1,
- 1		56-35	5'	240	56	DIRT
- 1		56-36	5 '	240	7 SG	ASPHALT
1,	73	56-37	5'	24,		PEFITOL AT 2'-
	1350	56-29 1430 D	2	120	56	- 11
	B	1430 D	2 PART	- 51.	T\$	

Surus

Sampling Log

					Project No.:
Date:			SG	T	. 1 . 1 . 1 . 1 . 1 . 1
			Purge		
		Depth (ft)	Volume	Sample	Note and Observations
Time	Sample ID	(11)	(cc)	Туре	
		 			
				1	
	<u> </u>	1			
					/
					V
				1	
		<u> </u>	<u> </u>	 	
1		1			
 	-	 			
			 	<u></u>	
1		-			
			/		
-		\mathcal{X}			
					
	17				
	/				
	/				
	<u>' </u>				
					,
<i>Y</i>					
/					
/					
L					

Appendix D:

Analyte Confirmation Sample Results

December 16, 1997

Sample Delivery Group (SDG): 70551

Scott Norris InterPhase Environmental 6200 Peachtree Street Los Angeles, CA 90040

Dear Scott:

Enclosed is the analytical report for the samples received and analyzed by Environmental Analytical Service, Inc. for the following project:

Project Name:

Jervis B. Webb

Project Number:

97119

The report consists of the following sections:

- I. Sample Description
- II. Laboratory Narrative and Chain of Custody Forms
- III. Laboratory Certification
- IV. Quality Control Reports
- V. Analytical Results

If you have any questions on the report or the analytical data please contact me at (805) 781-3585.

Sincer Ay

Steven D. Mayt, Ph.D. Laboratory Director

SDH/lims

Analytical Report

SDG Number 70551

Client: InterPhase Environmental Date Received: 12/3/97

I. SAMPLE DESCRIPTION AND ANALYSIS REQUESTED

				Pressu	ure (torr)
Client Sample No.	EAS Lab No.	Analysis Requested	Date Sampled	Rec	Final
SG-23-5'	70551 1	EPA TO-14 Volatile Organics	12/2/97	722	904

II. LABORATORY CASE NARRATIVE and CHAIN OF CUSTODY FORMS

SDG Number:

70551

Analysis performed for:

InterPhase Environmental

All laboratory quality control criteria were met for the samples in this report except chlorobenzene exceeds the QC limits for the duplicate spike analysis.

III. LABORATORY CERTIFICATION

I certify that his that package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the condition noted above.

Steven D. Hoyt, Ph. Laborator Director

ENVIRONMENTAL

Analytical Service, Inc.

A MAN MANNE

CHAIN OF CUSTODY RECORD

3421 Empresa, Sulte A San Luis Oblspo, CA

93401 805.781.3585 Fax 805.541.4550

REMARKS NAV FILL INST Received the Lab by Received by. Time EV2 I VBOBY LOBA ID 12-2-47 7 Date e 42/27 DALLIAL PRRESSURE TO THE TRANSPORT OF THE PARTY O 164 Quote Number CONTAINER/ CANASTER NUMBER W · Waker K. St. Soul · & S()8 MATRIX LEGEND MATRIX Relinquished by: SAMPLED BY 3 ANGILIST, CA 90040 FAX-212-278-7707 LOS ANGENER CA 90040 <₩-A UO XP 6200 / KACHTASS 6200 PSACHTRES FAKRO SAMPLE 240/ BILLING INFORMATION: * TO INTERPHASE INTSAPHASE 12-2-97 NURRIS 213-178-770 SAMPLE MARTIN 405 Purchase Order/Billing Reference: Project Number: 97119 REPORT TO: ATTENTION SCUTT SAMPLE DESCRIPTION <6-23-City/State/Zip Chy/State/Zlp COMMENTS ATTENTION Company Address Address

IV. QUALITY CONTROL REPORT

SDG Number:

70551

Client:

InterPhase Environmental

LABORATORY OC REPORT

QC NARRATIVE

This report was run with the standard laboratory QC.

STANDARD LABORATORY QC REPORT

Unless project specific QC was requested, this Section contains the standard laboratory QC supplied with the analytical reports, which includes the daily method blank and the daily duplicate control samples as described below. Each day that samples are analyzed comprises a Daily Analytical Batch for a particular instrument. A Daily Analytical Batch QC report will be supplied for each method and each day samples from this SDG Group were analyzed.

METHOD BLANK

A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples. A copy of the batch blank is included with the report.

DUPLICATE CONTROL SAMPLES

A duplicate or duplicate control sample (DCS) was analyzed as part of each daily analytical batch. A DCS is a well-characterized matrix (blank water, ambient air, or actual sample) which may or may not be spiked and run in duplicate with your sample batch. The results are on the attached Duplicate Sample/Spike results. Precision is measured in a duplicate test by Relative Percent Difference (RPD) as in:

RPD = $[\% \text{ Recovery Test 1 - } \% \text{ Recovery Test 2}] \times 100$ (Recovery Test 1 + Recovery Test 2) / 2

ENVIRONMENTAL Analytical Service Inc.

_i_wLww.nL

METHOD BLANK REPORT

File:	Full Scan GC/MS CC172A D			Number, B12157 Sampled NA
Client:	NA			Analyzed 12/15/97
Description:	CAN CHECK CAN# 172 500 MI	+ 2 ML IS		
Analyst:	LR			
		MDL	Amount	Amount
	Compound	ppbv	ppbv	Flag ug/m3*
	Freon 12	0.1	ND	ND
	chloromethane	0.1	ND	ND
	freon 114	0 1	ND	ND
	vinyl chloride	0 1	ND	ND
	bromomethane	0 1	ND	ND
	chloroethane	0 1	ND	ND
	freon 11	0 1	ND	ND
	1,1-dichloroethene	0.1	ND	ND
	freon 113	0.1	ND	ND
	dichloromethane	0.1	ND	ND
	1,1-dichloroethane	0.1	ND	ND
	c-1,2-dichloroethene	0.2	ND	ND
	chloroform	0.1	ND	ND
	1,1,1-trichloroethane	0.1	ND	ND
	1,2-dichloroethane	0.1	ND	ND
	benzene	0 1	ND	ND
	carbon tetrachloride	0.1	ND	ND
	1,2-dichloropropane	0 1	ND	ND
	trichloroethene	0 1	ND	ND
	c-1,3-dichloropropene	0.1	ND	ND
	t-1,3-dichloropropene	0.1	ND	ND
	toluene	0.1	ND	ND
	1,1,2-Trichloroethane	0 1	ND	ND
	1,2-dibromoethane	0.1	ND	ND
	tetrachloroethene	0.1	ND	ND
	chlorobenzene	0 1	ND	ND
	ethylbenzene	0.1	ND	ND
	m,p-xylene	0.1	ND	ND
	styrene	0 1	ND	ND
	o-xylene	0 1	ND	ND
	1,1,2,2-tetrachloroethane	0.1	ND	ND
	4-ethyltoluene	0 1	ND	ND
	1,3,5-Trimethylbenzene	0 1	ND	ND
			· · -	· · -

Notes:

1,2,4-trimethylbenzene

m-dichlorobenzene

p-dichlorobenzene

o-dichlorobenzene

1,2,4-trichlorobenzene

hexachlorobutadiene

benzyl chloride

ND = Not detected at or above the listed minimum detection limit (MDL)

ND

Reported results are to be interpreted to two significant figures

0 1

0 1

03

0 1

0 1

03

0 1

^{*}ug/m3 calculated assuming conditions at 60 F and 1 atm

ENVIRONMENTAL Applying the

hrwhir

LABORATORY CONTROL AND DUPLICATE CONTROL SPIKE REPORT

Spike: QC12157

Spike Dup.: QC12157DUP

OC Lot: 12/15/97			Method:	Full Scan (
33	Theoretical	Spike	Spike Dup	% Recov.	%Recov.		% Rec.
Compound	Conc.ppbv	ppbv	ppbv	Spike	Spike Dup.		Limits
Vinyl Chloride	0.74	0.83	0.74	112	99	12	70-130%
1,1-Dichloroethene	0.83	1.04	1.08	124	129	4	70-130%
Dichloromethane	0.78	0.84	0.88	107	113	5	70-130%
1,1-Dichloroethane	0.74	0.82	0.78	110	105	4	70-130%
Chloroform	0.78	0.91	0.89	116	114	2	70-130%
1,1,1-Trichloroethane	0.57	0.70	0.73	124	128	3	70-130%
1,2-Dichloroethane	0.90	1.02	0.95	114	105	8	70-130%
•	0.91	0.99	1.00	110	110	0	70-130%
Benzene Carbon Tetrachloride	0.83	1.04	1.06	124	127	2	70-130%
	0.89	0.99	1.06	111	119	7	70-130%
Trichloroethene	1.04	1.19	1.17	115	113	2	70-130%
Toluene	1.12	1.28	1.37	115	122	6	70-130%
1,1,2-Trichloroethane	1.21	1.55	1.56	128	129	0	70-130%
Tetrachloroethene	1.32	1.69	1.80	128	136	7	70-130%
Chlorobenzene		1.03	1.40	115	127	10	70-130%
Ethylbenzene	1.10		1.63	110	118	8	70-130%
m,p-Xylene	1.37	1.51		111	118	6	70-130%
o-Xylene	1 47	1.63	1.73	1 1 1	110	O	. 5 10070

V. ANALYTICAL RESULTS

SDG Number:

70551

Client:

InterPhase Environmental

The following pages contain the certified reports for the analytical methods and the compounds requested. The reports are in order of analytical method then EAS ID number. A brief description of the units that appear on the reports is given below:

ppbV, ppmV, Percent

Parts per billion by volume (also known as mole ratio) and other related units. This is the primary reporting unit for all volatile organic compound analysis except the hydrocarbon speciation and total hydrocarbons. This unit is independent of temperature and pressure.

ppbV = <u>nanomoles of compound</u> moles of air

ug/m3, mg/m3

Micrograms of compound per cubic meter of air and other related units. This is the primary reporting unit for semi volatile organic compounds. It is not a primary reporting unit for volatile organic compounds because it is temperature and pressure dependent, so the result will vary depending on the conditions when the sample was collected. EAS provides the units on its analytical reports as a convenience to the client, but they should be used with caution. The following equation can be used to convert from ppbV to ug/m3.

 $ug/m3 = ppbV \times MW$ compound 23.68

23.68 is the molar volume of a gas at 60 F and 1 atm pressure

ppbC, ppmC

Parts per billion by volume as carbon (methane) and other related units. This unit is the primary reporting unit for hydrocarbon analysis, even if it does not appear on the report. This unit is used because the flame ionization detector response is proportional to the number of carbons in the compound, so an accurate concentration can be reported even if the identification of the compound is not known.

ppbC = ppbV x number of carbons in compound

ENVIRONMENTAL

Analytical Service, Inc.

Limburn

ANALYTICAL REPORT

EPA TO-14 F	Full Scan GC/MS	Laboratory Number, 70551-1				
File:	7055101A.D		Date S	Sampled 12/2/97		
Client:	INTERPHASE ENVIRONMENTAL		Date A	nalyzed 12/15/97		
Description.	SG-23-5' CAN# 791 20ML + 2	ML IS				
Analyst:	JK					
		MDL	Amount	Amount		
	Compound	ppbv	ppbv	Flag ug/m3*		
	Freon 12	3.1	ND	ND		
	chloromethane	3.1	ND	ND		
	freon 114	3.1	ND	ND		
	vinyl chloride	3.1	ND	ND		
	bromomethane	3.1	ND	ND		
	chloroethane	3.1	ND	ND		
	freon 11	3.1	ND	ND		
	1,1-dichloroethene	3.1	ND	ND		
	freon 113	3.1	ND	ND		
	dichloromethane	3.1	3.6	12.8		
	1,1-dichloroethane	3.1	ND	ND		
	c-1,2-dichloroethene	6.3	ND	ND		
	chloroform	3.1	ND	ND		
	1,1,1-trichloroethane	3.1	97.5	547.4		
	1,2-dichloroethane	3.1	ND	ND		
	benzene	3.1	ND	ND		
	carbon tetrachloride	3.1	ND	ND		
	1,2-dichloropropane	3.1	ND	ND		
	trichloroethene	3.1	313.1	1732 2		
	c-1,3-dichloropropene	3.1	ND	ND		
	t-1,3-dichloropropene	3.1	ND	ND		
	toluene	3.1	4.2	16.4		
	1,1,2-Trichloroethane	3.1	ND	ND		
	1,2-dibromoethane	3.1	ND	ND		
	tetrachloroethene	3.1	509.9	3574.7		
	chlorobenzene	3.1	ND	ND		
	ethylbenzene	3,1	ND	ND		
	m,p-xylene	3.1	8.0	35.6		
	styrene	3.1	3.9	Q 17.2		
	o-xylene	3.1	3.2	14.4		
	1,1,2,2-tetrachloroethane	3.1	ND	ND		
	4-ethyltoluene	3.1	ND	ND		
	1,3,5-Trimethylbenzene	3.1	ND	ND		
	1,2,4-trimethylbenzene	3.1	ND	ND		
	m-dichlorobenzene	3.1	ND	ND		
	benzyl chloride	9.4	ND	ND		
	•	3.1	ND	ND		
	p-dichlorobenzene	3.1 3.1	ND	ND		
	o-dichlorobenzene					
	1,2,4-trichlorobenzene	9.4	ND	ND		
	hexachlorobutadiene	3.1	ND	ND		

Notes:

ND = Not detected at or above the listed minimum detection limit (MDL)

Reported results are to be interpreted to two significant figures.

^{*}ug/m3 calculated assuming conditions at 60 F and 1 atm

ENVIRONMENTAL

Analytical Service, Inc

DATA QUALIFIERS AND ABBREVIATIONS

*	See	case	narrative	

- B This compound was also detected in the blank
- D This report was calculated from a secondary dilution factor
- E Compound exceeds the calibration range and is an estimated value
- J The amount reported is an estimated value as it is below the reported MDL
- F Higher detection limit due to sample matrix
- G Higher detection limit due to limited sample size
- Q Compound ion ratio qualifiers are outside the standard acceptance criteria
- R Compound retention time (RT) is outside the acceptance criteria for the method
- MDL Minimum Detection Limit Instrument detection limit

The minimum detectable level (MDL) is the lowest concentration of a substance that can be measured with confidence. The MDL is calculated at the 99% confidence level from seven repetitive measurements on a sample whose concentration does not exceed 10 times the estimated MDL (Glasser et. al. 1981; Long and Winefordner, 1983). In generating an MDL study, a sample is prepared in the appropriate matrix with components near the estimated MDL which is about 3 times the instrument noise level. This sample is run seven consecutive times and the standard deviation (S) is calculated. The MDL is determined using the following formula:

MDL = 3.14*S.

ND Not Detected - a reported limit

NA Not Applicable

RPD Relative Percent Difference

The relative percent difference for a pair of duplicate samples is calculated from repetitive runs on sample pairs representative of the types of samples that are analyzed. The RPD provides information on the precision or reproducibility of the actual measurement process. The RPD is calculated for a particular compound from the average using the following equation:

 $RPD(\%) = \underline{Difference * 100}$ Average

RSD Relative Standard Deviation

The relative standard deviation is reported as a percentage deviation at a particular concentration using the following equation:

RSD(%)= <u>S * 100</u> Ave.

DEFINITIONS

ppbV

= # nanomoles cmpd

= ppbC

moles air

carbons in cmpd

Compound is reported as ppb of compound by Volume

This unit is temperature independent

ug/m³

= ppbV x MW compound

23.68

Compound is reported as ug of a compound in a m³ of air

23.68 is the molar volume of a gas at 60° F and 1 atm pressure

MW = molecular weight

This unit is temperature dependent

ppbC

= ppbV x # carbons in compound

Appendix D

Laboratory Report and Chain-of-Custody for Soil Chemical Analyses

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Erler & Kalinowski, Inc. ATTN: Mr. Steve Miller 2951 28th St. Suite 1020 Santa Monica, CA 90405

Client Project ID: Webb
Client Project #: 961025.02

Laboratory Reference #: EKI 9688

Sampled: 10/28/97 **Received:** 10/28/97

Sample Description: Soil,

Analyzed: 10/29/97 **Reported:** 11/04/97

pH (9045)

Laboratory Sample Number	Client Sample Number	Sample Results
97100418	B1-5.5	7.9
97100422	B4-6	8.3
97100425	B5-1	7.7
97100426	B5-6	8.0
97100427	B6-6	6.3
97100428	B7-2	7.6
97100429	B7-6	6.7
97100430	B8-2	8.6
97100431	B8-6	8.8

Orange Coast Analytical

Mark Noorani

Laboratory Director

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

LABORATORY REPORT FORM

Laboratory Name: ORANGE COAST ANALYTICAL, INC.

Address: 3002 Dow Suite 532 Tustin, CA 92780

Telephone: (714) 832-0064

Laboratory Certification

(ELAP) No.: 1416 Expiration Date: 1999

Laboratory Director's Name (Print): Mark Noorani

Client: <u>Erler & Kalinowski, Inc.</u>

Project No.: 961025.02

Project Name: Webb

Laboratory Reference: EKI 9688

Analytical Method: EPA 8260, Title 22 Metals 8015m for Diesel

 Date Sampled:
 10/28/97

 Date Received:
 10/28/97

 Date Reported:
 11/04/97

Sample Matrix: Soil

Chain of Custody Received: Yes

Laboratory Director's Signature: Mark Moorani

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS

Reporting Unit: mg/kg

DATE	1111117755						
	ANALYZED		10/31/97	10/31/97	10/31/97	10/31/97	10/31/97
LAB SA	AMPLE I.D.			97100418	97100420	97100421	97100423
CLIENT SA	AMPLE I.D.			B1-5.5	B2-5.5	B3-6	B4-10.5
EXTRACTABLE FUEL HYD	ROCARBONS MI	DL	MB				
8015M C7-C9	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C10-C11	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C12-C13	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C14-C15	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C16-C17	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C18-C19	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C20-C21	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C22-C23	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C24-C25	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C26-C27	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C28-C30	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C31-C40	0.	5	<0.5	<0.5	<0.5	<0.5	<0.5

DATE ANA	LYZED		10/31/97	10/31/97	10/31/97	10/31/97	10/31/97
LAB SAMF				97100425	97100428	97100430	97100432
CLIENT SAMP	LE I.D.			B5-1	B7-2	B8-2	B9-5.5
EXTRACTABLE FUEL HYDROC	ARBONS M	DL	MB				
8015M C7-C9	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C10-C11	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C12-C13	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C14-C15	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C16-C17	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C18-C19	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C20-C21	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C22-C23	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C24-C25	0	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C26-C27	0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C28-C30	0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5
8015M C31-C40	0.	.5	<0.5	<0.5	<0.5	<0.5	<0.5

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS

Reporting Unit: mg/kg

DATE		10/31/97	10/31/97	10/31/97	
	LAB SAMPLE I.D.			97100433	97100434
CLIENT S	SAMPLE I.D.			B10-6	B11-6
EXTRACTABLE FUEL HY	DROCARBONS	MDL	MB		
8015M C7-C9		0.5	<0.5	<0.5	<0.5
8015M C10-C11		0.5	<0.5	<0.5	<0.5
8015M C12-C13		0.5	<0.5	<0.5	<0.5
8015M C14-C15		0.5	<0.5	<0.5	<0.5
8015M C16-C17		0.5	<0.5	<0.5	<0.5
8015M C18-C19		0.5	<0.5	<0.5	<0.5
8015M C20-C21		0.5	<0.5	<0.5	<0.5
8015M C22-C23		0.5	<0.5	<0.5	<0.5
8015M C24-C25		0.5	<0.5	<0.5	<0.5
8015M C26-C27		0.5	<0.5	<0.5	<0.5
8015M C28-C30		0.5	<0.5	<0.5	<0.5
8015M C31-C40		0.5	<0.5	<0.5	<0.5

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

	DATE	ANALYZED	10-29/11-3/11-4-97	10-29/11-3/11-4-97	10-29/11-3/11-4-97
		SAMPLE I.D.		97100419	97100422
	CLIENT S	SAMPLE I.D.	B1-5.5	B1-11	B4-6
	DILUTIO	ON FACTOR	1	1	1
		PREP: TTLC		TTLC	TTLC
		LE MATRIX		Soil	Soil
	REPORTING (JNIT: mg/kg	mg/kg	mg/kg	mg/kg
METAL	METHOD	CRDL			T
Antimony	6010	5.0	<5.0	<5.0	<5.0
Arsenic	6010	1.0	<1.0	<1.0	<1.0
Barium	6010	0.1	64	83	67
Beryllium	6010	0.1	<0.1	<0.1	<0.1
Cadmium	6010	0.1	<0.1	<0.1	<0.1
Chromium (VI)	7196	0.5	<0.5	<0.5	<0.5
Chromium Total	6010	0.05	15	42	20
Cobalt	6010	0.5	4.5	5.6	5.2
Copper	6010	0.1	9.0	33	15
Lead	6010	1.0	<1.0	<1.0	<1.0
Mercury	7471	0.01	<0.01	<0.01	<0.01
Molybdenum	6010	0.5	<0.5	<0.5	<0.5
Nickel	6010	0.5	5.2	8.1	6.3
Selenium	6010	1.0	<1.0	<1.0	<1.0
Silver	6010	0.1	<0.1	<0.1	<0.1
Thallium	6010	5.0	<5.0	<5.0	<5.0
Vanadium	6010	0.5	16	24	20
Zinc	6010	0.1	28	54	35

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

<u> </u>	5:	4414137777	La catta atta de la	T	
			10-29/11-3/11-4-97	10-29/11-3/11-4-97	10-29/11-3/11-4-97
		SAMPLE I.D.		97100424	97100425
		SAMPLE I.D.		B4-16	B5-1
	DILUTIO	ON FACTOR	1	1	1
		PREP: TTLC		TTLC	TTLC
		LE MATRIX		Soil	Soil
	REPORTING I	REPORTING UNIT: mg/kg		mg/kg	mg/kg
METAL	METHOD	CRDL		<u> </u>	
Antimony	6010	5.0	<5.0	<5.0	<5.0
Arsenic	6010	1.0	<1.0	<1.0	<1.0
Barium	6010	0.1	57	94	57
Beryllium	6010	0.1	<0.1	<0.1	<0.1
Cadmium	6010	0.1	<0.1	<0.1	<0.1
Chromium (VI)	7196	0.5	0.88	<0.5	<0.5
Chromium Total	6010	0.05	14	30	12
Cobalt	6010	0.5	3.7	8.3	3.9
Copper	6010	0.1	11	13	5.1
Lead	6010	1.0	<1.0	<1.0	<1.0
Mercury	7471	0.01	<0.01	<0.01	<0.01
Molybdenum	6010	0.5	<0.5	<0.5	<0.5
Nickel	6010	0.5	5.3	14	5.4
Selenium	6010	1.0	<1.0	<1.0	<1.0
Silver	6010	0.1	<0.1	<0.1	<0.1
Thallium	6010	5.0	<5.0	<5.0	<5.0
Vanadium	6010	0.5	16	25	15
Zinc	6010	0.1	29	50	29

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

	DATE	ANALYZED	10-29/11-3/11-4-97	10-29/11-3/11-4-97	10-29/11-3/11-4-97
	LAB S	SAMPLE I.D.	97100426	97100427	97100428
	CLIENT S	SAMPLE I.D.	B5-6	B6-6	B7-2
	DILUTIO	ON FACTOR	1	1	1
		PREP: TTLC		TTLC	TTLC
		LE MATRIX		Soil	Soil
	REPORTING	JNIT: mg/kg	mg/kg	mg/kg	mg/kg
METAL	METHOD	CRDL		1	
Antimony	6010	5.0	<5.0	<5.0	<5.0
Arsenic	6010	1.0	<1.0	<1.0	<1.0
Barium	6010	0.1	56	77	67
Beryllium	6010	0.1	<0.1	<0.1	<0.1
Cadmium	6010	0.1	<0.1	<0.1	<0.1
Chromium (VI)	7196	0.5	<0.5	<0.5	<0.5
Chromium Total	6010	0.05	13	74	16
Cobalt	6010	0.5	4.0	5.2	4.2
Copper	6010	0.1	12	120	6.2
Lead	6010	1.0	<1.0	<1.0	<1.0
Mercury	7471	0.01	<0.01	<0.01	<0.01
Molybdenum	6010	0.5	<0.5	<0.5	<0.5
Nickel	6010	0.5	5.4	6.2	6.7
Selenium	6010	1.0	<1.0	<1.0	<1.0
Silver	6010	0.1	<0.1	<0.1	<0.1
Thallium	6010	5.0	<5.0	<5.0	<5.0
Vanadium	6010	0.5	17	21	19
Zinc	6010	0.1	28	45	33

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

	DATE	ΔΝΔΙ ΥΖΕΩ	10-29/11-3/11-4-97	10-29/11-3/11-4-97	140 00/44 0/44 4 07
		SAMPLE I.D.			10-29/11-3/11-4-97
		SAMPLE I.D.		97100430	97100431
			B7-6	B8-2	B8-6
		ON FACTOR		1	1
		PREP: TTLC		TTLC	TTLC
		LE MATRIX	·····	Soil	Soil
RE	PORTING (JNIT: mg/kg	mg/kg	mg/kg	mg/kg
METAL	METHOD	CRDL			
Antimony	6010	5.0	<5.0	<5.0	<5.0
Arsenic	6010	1.0	<1.0	<1.0	<1.0
Barium	6010	0.1	60	61	61
Beryllium	6010	0.1	<0.1	<0.1	<0.1
Cadmium	6010	0.1	<0.1	<0.1	<0.1
Chromium (VI)	7196	0.5	<0.5	<0.5	<0.5
Chromium Total	6010	0.05	19	21	16
Cobait	6010	0.5	4.0	4.3	4.0
Copper	6010	0.1	18	7.3	8.5
Lead	6010	1.0	<1.0	<1.0	<1.0
Mercury	7471	0.01	<0.01	<0.01	<0.01
Molybdenum	6010	0.5	<0.5	<0.5	<0.5
Nickel	6010	0.5	5.4	5.0	5.6
Selenium	6010	1.0	<1.0	<1.0	<1.0
Silver	6010	0.1	<0.1	<0.1	<0.1
Thallium	6010	5.0	<5.0	<5.0	<5.0
Vanadium	6010	0.5	16	16	17
Zinc	6010	0.1	30	29	28

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

	DATE	ANIALVZED	10 00/14 0/14 1 07	140,0044,044,5==
			10-29/11-3/11-4-97	10-29/11-3/11-4-97
		SAMPLE I.D.		97100434
		SAMPLE I.D.		B11-6
		ON FACTOR	 	1
		PREP: TTLC	TTLC	TTLC
		PLE MATRIX		Soil
	REPORTING	UNIT: mg/kg	mg/kg	mg/kg
ACTAL	T	·		
METAL	METHOD	CRDL		
Antimony	6010	5.0	<5.0	<5.0
Arsenic	6010	1.0	<1.0	<1.0
Barium	6010	0.1	33	53
Beryllium	6010	0.1	<0.1	<0.1
Cadmium	6010	0.1	<0.1	<0.1
Chromium (VI)	7196	0.5	<0.5	<0.5
Chromium Total	6010	0.05	7.3	13
Cobalt	6010	0.5	2.3	3.6
Copper	6010	0.1	3.4	6.4
Lead	6010	1.0	<1.0	<1.0
Mercury	7471	0.01	<0.01	<0.01
Molybdenum	6010	0.5	<0.5	<0.5
Nickel	6010	0.5	3.0	5.3
Selenium	6010	1.0	<1.0	<1.0
Silver	6010	0.1	<0.1	<0.1
Thallium	6010	5.0	<5.0	<5.0
Vanadium	6010	0.5	8.9	16
Zinc	6010	0.1	16	25

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS 8260 Reporting Unit: ug/kg

	Date An	alysis	10/29/97	10/29/97	10/29/97	10/29/97	10/29/97
	Dilution	Factor	1	1	1	1	1
		nple I.D.	97100418	97100419	97100420	97100421	97100422
	Client S	ample I.D.	B1-5.5	B1-11	B2-5.5	B3-6	B4-6
COMPOUND	MDL	MB					
Acetone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromodichloromethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromoform	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromomethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Butanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon Disulfide	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon Tetrachloride	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chlorobenzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chlorodibromomethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Chloroethyl vinyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chloromethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1-Dichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1-Dichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Trans 1,2-Dichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichloropropane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
cis-1,3-Dichloropropene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
trans-1,3-Dichloropropene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Ethylbenzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Hexanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methylene chloride	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Methyl-2-pentanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Styrene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1,2,2-Tetrachloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Tetrachloroethene	2.5	<2.5	74	130	18	42	76
Toluene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1,1-Trichloroethane	2.5	<2.5	<2.6	<2.5	<2.5	<2.5	<2.5
1,1,2-Trichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Trichloroethene	2.5	<2.5	24	37	7.3	10	21
Trichlorofluoromethane	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl acetate	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
/inyl Chloride	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Total Xylenes	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5

SURROGATE	SPK	ACP%	MB	%RC	%RC	%RC	%RC	%RC
RECOVERY	CONC		%RC					
Dibromofluoromethane	50	80-120	113	114	114	114	114	111
Toluene-d8	50	81-117	82	86	82	87	87	82
4-Bromofluorobenzene	50	74-121	98	85	80	88	94	77

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS 8260 Reporting Unit: ug/kg

	Date An		10/30/97	10/30/97	10/29/97	10/30/97	11/3/97
		Factor	20	1	1	1	1
		nple I.D.	97100424	97100426	97100427	97100429	97100431
	Client S	ample I.D.	B4-16	B5-6	B6-6	B7-6	B8-6
COMPOUND	MDL	MB					
Acetone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromodichloromethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromoform	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromomethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Butanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon Disulfide	5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0
Carbon Tetrachloride	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chlorobenzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chlorodibromomethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Chloroethyl vinyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chloromethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5 <2.5
1,1-Dichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5 <2.5
1,1-Dichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	
Trans 1,2-Dichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichloropropane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
cis-1,3-Dichloropropene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
trans-1,3-Dichloropropene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Ethylbenzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Hexanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.5
Methylene chloride	5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0
4-Methyl-2-pentanone	5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0
Styrene	2.5	<2.5	<2.5	<2.5	<2.5		<5.0
1,1,2,2-Tetrachloroethane	2.5	<2.5	<2.5	<2.5		<2.5	<2.5
Tetrachloroethene	2.5	<2.5	2,200	25	<2.5	<2.5	<2.5
Toluene	2.5	<2.5			130	55	2.9
1,1,1-Trichloroethane	2.5		<2.5	<2.5	<2.5	<2.5	<2.5
1,1,2-Trichloroethane	2.5	<2.5	<2.6	<2.5	<2.5	<2.5	<2.5
Trichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Trichlorofluoromethane		<2.5	92	5.3	31	19	<2.5
/inyl acetate	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl acetate Vinyl Chloride	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Total Xylenes	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
olai Ayichics	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5

SURROGATE	SPK	ACP%	MB	%RC	%RC	%RC	%RC	%RC
RECOVERY	CONC		%RC					73.10
Dibromofluoromethane	50	80-120	109	108	107	114	108	102
Toluene-d8	50	81-117	84	84	85	81	86	106
4-Bromofluorobenzene	50	74-121	111	91	92	91	82	97

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

ANALYTICAL TEST RESULTS 8260 Reporting Unit: ug/kg

	Date An	Date Analysis 1		10/30/97	10/30/97	10/30/97	10/30/97
		Factor	1	1	1	1	1
		nple I.D.	97100432	97100433	97100434	97100435	97100436
	Client S	ample I.D.	B9-5.5	B10-6	B111-6	B12-6	B13-6
COMPOUND	MDL	MB					
Acetone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromodichloromethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromoform	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Bromomethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Butanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon Disulfide	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon Tetrachloride	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chlorobenzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chlorodibromomethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Chloroethyl vinyl ether	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Chloromethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1-Dichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1-Dichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Trans 1,2-Dichloroethene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,2-Dichloropropane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
cis-1,3-Dichloropropene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
trans-1,3-Dichloropropene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Ethylbenzene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
2-Hexanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methylene chloride	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Methyl-2-pentanone	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Styrene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1,2,2-Tetrachloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Tetrachloroethene	2.5	<2.5	3.6	27	61	<2.5	<2.5
Toluene	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1,1-Trichloroethane	2.5	<2.5	<2.6	<2.5	<2.5	<2.5	<2.5
1,1,2-Trichloroethane	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Trichloroethene	2.5	<2.5	<2.5	6.4	16	<2.5	<2.7
Trichlorofluoromethane	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl acetate	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Total Xylenes	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5

SURROGATE	SPK	ACP%	MB	%RC	%RC	%RC	%RC	%RC
RECOVERY	CONC		%RC					
Dibromofluoromethane	50	80-120	113	108	110	115	108	112
Toluene-d8	50	81-117	82	84	87	84	88	82
4-Bromofluorobenzene	50	74-121	98	91	83	87	84	88

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

QA / QC REPORT Reporting Unit: mg/l

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

LAB Sample 1.D.: 97100414-97100419-97100434

Analyte	DATE	R1	SP	MS	MSD	%MS	%MSD	RPD	ACP	ACP
	ANALYZED					:	1 1		%MS	RPD
Antimony	11/03/97	0.0	30	28	30	93	100	7	80-120	15
Arsenic	11/03/97	0.0	10	9.6	10	96	100	4	80-120	15
Barium	11/03/97	8.3	10	18	20.1	98	118	10	80-120	15
Beryllium	11/03/97	0.0	1.0	0.97	0.96	97	96	1	80-120	15
Cadmium	11/03/97	0.0	1.0	0.97	0.98	97	98	1	80-120	15
Chromium	11/03/97	4.2	5.0	9.2	9.8	100	112	6	80-120	15
Chromium(VI)	10/29/97	0.0	1.0	1.1	1.1	110	110	0	80-120	15
Cobalt	11/03/97	0.56	1.0	1.4	1.5	84	94	7	80-120	15
Copper	11/03/97	3.3	1.0	4.1	4.2	80	90	2	80-120	15
Lead	11/03/97	0.0	10	8.9	8.9	89	89	0	80-120	15
Mercury	11/04/97	0.0	0.020	0.017	0.016	85	80	6	80-120	15
Molybdenum	11/03/97	0.0	10	9.9	10.7	99	107	8	80-120	15
Nickel	11/03/97	0.81	5.0	5.2	5.8	88	100	11	80-120	15
Selenium	11/03/97	0.0	10	11	12	110	120	9	80-120	15
Silver	11/03/97	0.0	5.0	3.8	4.2	76	84	10	80-120	15
Thallium	11/03/97	0.0	30	25	25	83	83	0	80-120	15
Vanadium	11/03/97	2.4	5.0	7.5	7.4	102	100	1	80-120	15
Zinc	11/03/97	5.4	5.0	9.6	10.4	84	100	8	80-120	15

SPK CONC = Spiking Concentration (≤5 X PQL); PQL = Practical Quantitation Limit.

ACP = Acceptable Range of Percent; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

LAB Sample I.D.: OCA 2153-OCA 2159-OCA 3171

ANALYTE	Dete Analyzed	SPK CONC	RESULTS	%RECOVERY	ACP %
Antimony	11/03/97	30	27	90	80 - 120
Arsenic	11/03/97	10	10	100	80 - 120
Barium	11/03/97	1.0	1.0	100	80 - 120
Cadmium	11/03/97	1.0	1.0	100	80 - 120
Chromium(VI)	10/29/97	1.0	1.0	100	80 - 120
Chromium(T)	11/03/97	1.0	0.95	95	80 - 120
Cobalt	11/03/97	1.0	0.94	94	80 - 120
Copper	11/03/97	1.0	1.0	100	80 - 120
Lead	11/03/97	10	9.3	93	80 - 120
Mercury	11/04/97	0.02	0.018	90	80 - 120
Molybdenum	11/04/97	10	8.7	87	80 - 120
Nickel	11/03/97	5.0	5.3	106	80 - 120
Selenium	11/03/97	10	11	110	80 - 120
Thallium	11/03/97	30	30	100	80 - 120
Vanadium	11/03/97	5.0	5.1	102	80 - 120
Zinc	11/03/97	1.0	1.0	100	80 - 120

ANALYST: Burt Secrest DATE: 12/30/97

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8260 QA / QC REPORT Reporting Unit : μ g/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 10/29/97

Batch #:

LAB Sample 1.D.: 97100413

Analyte	R1	SP	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethene	0.0	50	49	48	98	96	2	59-172	22
Benzene	0.0	50	47	45	94	90	4	66-142	21
Trihloroethene	0.0	50	50	46	100	92	8	62-137	24
Toluene	0.0	50	40	37	80	74	8	59-139	21
Chlorobenzene	0.0	50	53	50	106	100	6	60-133	21

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MS %MSD = Percent Recovery of MSD; RPD = Relative Percent Difference.

ACP = Acceptable Range of Percent; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 10/28/97

Batch #:

LAB Sample I.D.: OCA 4150

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP %
1,1-Dicholoroethane	50	48	96	80- 120
Carbon tetrachloride	50	42	84	80- 120
Ethylbenzene	50	44	88	80- 120
Tetrachloroethene	50	40	80	80- 120

DATE: 12/30/97

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8260 QA / QC REPORT Reporting Unit : μ g/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 10/30/97

Batch #:

LAB Sample I.D.: OCA 200

Analyte	R1	SP	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethene	0.0	50	40	41	80	82	2	59-172	22
Benzene	0.0	50	44	45	88	90	2	66-142	21
Trihloroethene	0.0	50	50	50	100	100	0	62-137	24
Toluene	0.0	50	46	44	92	88	4	59-139	21
Chlorobenzene	0.0	50	50	53	100	106	6	60-133	21

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MS %MSD = Percent Recovery of MSD; RPD = Relative Percent Difference.

ACP = Acceptable Range of Percent ; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 11/03/97

Batch #:

LAB Sample I.D.: OCA 4150

ANALYTE	SPK CONC	RESULTS:::	%RECOVERY	ACP %
1,1-Dicholoroethane	50	48	96	80- 120
Carbon tetrachloride	50	42	84	80- 120
Ethylbenzene	50	44	88	80- 120
Tetrachloroethene	50	40	80	80- 120

ANALYST: Erin Song	DATE: 12/30/97
	DATE: 12/30/37

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8015m QA / QC REPORT Reporting Unit: mg/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 10/31/97

Batch #:

LAB Sample I.D.: OCA 200

Analyte	R1	SP CONC	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
Extractable Fuel Hydrocarbons	0.0	100	57	63	57	63	10	50-125	25

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MS %MSD = Percent Recovery of MSD; RPD = Relative Percent Difference.

ACP = Acceptable Range of Percent; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 10/31/97

Batch #:

LAB Sample I.D.: OCA 4177

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP %
Extractable Fuel Hydrocarbons	2000	2200	110	80- 120

ANALYST: Michael Schwalbe DATE: 12/30/97

Erler & Kalinowski, Inc.

Consulting Engineers and Scientists Santa Monica Business Park 2951 28th Street, Suite 1020 Santa Monica, California 90405 (310) 314-8855 Fax (310) 314-8860

FACSIMILE TRANSMISSION COVER SHEET

DATE:

October 29, 1997

CONTRACT NO: 961025.02

SUBJECT:

REVISED Additional Analysis

Request for Samples from

5030 Firestone Blvd, South Gate

Total Pages with Cover Sheet:

1

TO:

Marie / Mark Noorani

Orange Coast Analytical 3002 Dow, Suite 532 Tustin, CA 92680

Fax No:

(714) 832-0067

FROM:

Steve Miller

EKI Santa Monica

REMARKS

Please perform the following additional analyses for samples collected

from 5030 Firestone Boulevard on October 28, 1997

Sample No.	Analyses Requested
B4 - 16	CCR Title 22 Metals
B5 - 6	pН
B6 - 6	pН
B7 - 6	pH
B8 - 6	pH
B10 - 6	CCR Title 22 Metals

Please call with any questions. Thank you

3002 Dow, Suite 532 Tustin, CA 92680 (714) 832-0064, Fax (714) 832-0067

Chain of Custody Record

ō

L‱. → N∪ Page

REQUIRED TAT:

CUSTOMER INFORMATION		DBOILE	DDO IECT INECOMATION	1]		(CV)	/ / / / /		٦٢
1;	PROJECT NAME		I INTONIALI	5		_	POHL	\ \ \	\t <u></u>	/ / / /		
SEND REPORT TO	T	1422				\	LIME	\ \ \ \ \	<u></u>	/ / /		
ANDERSON STOVE WILLER	NUMBER.	961025.	77			~\ <u>`</u>	SINE	<	/	/ / /		
AUTHERS. 1951 78 TH ST. SUITE 1020	LOCATION:					174	DIN		\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
SHOTA WONICH AP 70405	ADDRESS	50% FIN	THESTONE	2178		Vb	1 0 W	<u>`</u>	\	\ \ \		
			BATE					4	\	\		
THUNE 510 314 8855 FAX 3/10 314 8860	SAMPLED BY	KeH				\		\ \ \ S	\	\		
SAMPLE ID	NO. OF SAMPLE CONTAINERS DATE	LE SAMPLE TIME	SAMPLE	CONTAINER	PRES.		80/33/	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		REMARKS/P	REMARKS/PRECAUTIONS	
81-5.5	1 10/28/17	'	-	BKIKS	CN	×	×	×	+			
81-11		7:43	1	-	-	×						
81-15.5		7:50								中の		T-
81-20		7:58								150		_
82-5.5		8:70				×	×					
. 82 - 10.5		8:15		6		 				2 14		
23-6		8:34	,			×	×			2		
B3-11		14:8					+			4		
84-6		9:15				×	×	×		4		-
B4-10.5		81:6		,	-		×					
84-16		12:6		-		×	-	 				1
84-20.5		9:35			-					then b		
85:-1		9:55					×	×		2		
85-6	-	10:00	77	7	7	×	+					
Total No. of Samples:	~	Method of Shipment:	oment:				-	-				
Relinquished By: Date/Time:	<u> </u>	Received By:		Õ	Date/Time:			Repo	rting Forr	Reporting Format: (check)		
								2	NORMAL _	S.D. HMMD	MMD	
Relinquished By: Date/Time:	<u>,</u>	Received By:		<u> </u>	Date/Time:			8	RWQCB _	OTHER	er	1
Relinquished By: Date/Time:	4	Received For Lab By:	Lab By:	ă	Date/Time:			Samp	Sample Integrity:	ty: (check)		56
		`	`	,	111511	1	7	intact) t	-		
		40000	11111		9				5	ag 160		

All samples remain the property of the client who is responsible for disposal. A disposal fee may be imposed if client fails to pickup samples.

3002 Dow, Suite 532 Tustin, CA 92680

(714) 832-0064, Fax (714) 832-0067

Chain of Custody Record

Lat ... No

REQUIRED TAT:

ŏ

REMARKS/PRECAUTIONS S.D. HMMD OTHER (check) 202 おみ もこ Reporting Format: (check) **ま**2 727 Fal Sample Integrity: NORMAL RWQCB × X MALYSIS METHOD HEQUEST THOD × X × X × X × × × X X B X × × X × Date/Time: Date/Time: PRES. Š C110. SAMPLE CONTAINER MATRIX TYPE BLASS PROJECT INFORMATION 50% Fille start 2017 Received For/Lab By: 21db 25.02 Method of Shipment: 50:01 41/82/01 82:21 82:11 2p:21 50:21 SAMPLE 11.35 80:21 15:21 11:15 00:21 11:46 12.50 13:15 11:11 Received By: Received By: South ROA SAMPLE Date PROJECT NAME: SAMPLED BY ADDRESS LOCATION. NUMBER NO. OF CONTAINERS PHONE 3,0 3,48855THX 3,03,48860 ERIER + KALINOWSKI INC. SUITE 1020 SANTE MONICA, UA 90405 Date/Time: 10/26/97 Date/Time: Date/Time: **CUSTOMER INFORMATION** SEND REPORT TO. STRVE MILLER 2951 7874 57. SAMPLE 10 KOB HESSE Total No. of Samples: 10,5 2.01 Relinquished By: Relinquished By: B9-5.5 Relinquished By: B9-10.5 87-2 B7- 11 B10-6 B7-6 BB-11 28-2 BB-6 811-6 11-88 20 BG

All samples remain the property of the client who is responsible for disposal. A disposal fee may be imposed if client fails to pickup samples.

willing it

intact

4	_

3002 Dow, Suite 532

(714) 832-0064, Fax (714) 832-0067 Tustin, CA 92680

Chain of Custody Record Arialysis Request and

REQUIRED TAT:

Lav vois No

REMARKS/PRECAUTIONS S.D. HMMD OTHER (check) Hao 4010 Hoch Fas Reporting Format: (check) HOLD Sample Integrity: NORMAL RWQCB 7 O. Ayy intact AMALYSIS METHOD REQUEST THOD X X Date/Time: Date/Time: PRES. Ş BL10. BLAS SAMPLE CONTAINER MATRIX TYPE 5030 FINESTONE PROJECT INFORMATION 2016 and ? 20.520196 Regulated For Lab By: Method of Shipment: 82:21 02:51 17/81/8 13:30 13:53 (3:56 SAMPLE 14:15 14:10 Received By: Received By: なんな SAMPLE Date PROJECT NAME SAMPLED BY: LOCATION SANTA MONICA, CA 70465 ADDRESS. NUMBER NO. OF CONTAINERS PHONE 3.0 3.4 8855 FAX 2,0 3,4 8860 ADDRESS 2951 28 TH ST. SUITE 1020 COMPANY: ERLER + KALMOWSKI, MC. 10/28/97 Date/Time: Date/Time: Date/Time: **CUSTOMER INFORMATION** SEND REPORT TO STRUE MILLER SAMPLE 1D Total No. of Samples: Relinquished By: Relinquished By: Relinquished By: B12-6 11-218 B13-6 = B13 - 11 BA-6 BIM

All samples remain the property of the clight who is responsible for disposal. A disposal fee may be imposed if client fails to pickup samples.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

LABORATORY REPORT FORM
Laboratory Name: Orange Coast Analytical
Address: 3002 Dow Suite 532 Tustin, CA 92780
Telephone: (714) 832-0064
Laboratory Certification (ELAP) No.: 1416 Expiration Date: 1999
Laboratory Director's Name (Print): Mark Noorani
Laboratory Director's Signature: Mon Mooding
Client: Erler & Kalinowski, Inc. Project No.: 961025.02 Project Name: Webb Laboratory Reference: EKI 9688A Analytical Method: 8010
Other
Date Sampled: 10-28-97 Date Received: 10-28-97 Date Reported: 11-13-97
Sample Matrix: Soil Extraction Method: n/a Extraction Material: n/a
Chain of Custody Received: Yes X Sample Condition: Chilled
Sample Headspace Description (%): 0 Sample Container Material: Brass

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: µg/kg

Reporting Unit			t: μg/kg		
	DATE ANALYZED			11-11-97	11-11-97
	DATE EXT	RACTED		n/a	n/a
D	ILUTION H	FACTOR		3	3
L	AB SAMPLE	E I.D.		97110050	97110051
CLIE	NT SAMPLE	I.D.		B1-20	B2-10.5
COMPOUND		MDL	MB		
Bromodichloromethane		5.0	<5.0	<5.0	<5.0
Bromoform		5.0	<5.0	<5.0	<5.0
Bromomethane		5.0	<5.0	<5.0	<5.0
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0
Chlorobenzene		5.0	<5.0	<5.0	<5.0
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
2-Chloroethyl vinyl ether	c	25	<25	<25	<25
Chloroform		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
1,2-Dichlorobenzene		10	<10	<10	<10
1,3-Dichlorobenzene		10	<10	<10	<10
1,4-Dichlorobenzene		10	<10	<10	<10
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	<u> </u>	20	<20	<20	<20
Methylene chloride		25	<25	<25	<25
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0
Tetrachloroethene		5.0	<5.0	35	45
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0
Trichloroethene		5.0	<5.0	40	<5.0
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0
Vinyl chloride		5.0	<5.0	<5.0	<5.0
SURROGATE	SPK CONC	ACP%	MB %RC	%RC	
1,4-dichlorobutane	20	78-115	95	79	95

NA = Not Analyzed Limit; MB = Method Blank; ND = Not Detected (Below MDL);

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: µg/kg

keporting unit					
DATE ANALYZED			11-11-97	11-11-97	11-12-97
7	DATE EXT	RACTED		n/a	n/a
DILUTION FACTOR				3	600
LAB SAMPLE I.D.				97110052	97110053
CLIE	NT SAMPLE	E I.D.		B3-11	B4-20.5
COMPOUND		MDL	MB		
Bromodichloromethane		5.0	<5.0	<5.0	<5.0
Bromoform		5.0	<5.0	<5.0	<5.0
Bromomethane		5.0	<5.0	<5.0	<5.0
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0
Chlorobenzene		5.0	<5.0	<5.0	<5.0
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0
"Chloromethane		10	<10	<10	<10
2-Chloroethyl vinyl ether	r	25	<25	<25	<25
Chloroform		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
1,2-Dichlorobenzene		10	<10	<10	<10
1,3-Dichlorobenzene		10	<10	<10	<10
1,4-Dichlorobenzene		10	<10	<10	<10
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	<u> </u>	20	<20	<20	<20
Methylene chloride		25	<25	<25	<25
1,1,2,2-Tetrachloroethane	}	5.0	<5.0	<5.0	<5.0
Tetrachloroethene		5.0	<5.0	120	140,000
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0
Trichloroethene		5.0	<5.0	34	270,000
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0
Vinyl chloride		5.0	<5.0	<5.0	<5.0
SURROGATE	SPK CONC	ACP%	MB %RC	%RC	
1,4-dichlorobutane	20	78-115	95	95	103
			· · · · · · · · · · · · · · · · · · ·		4

 ${
m IDL}$ = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); ${
m NA}$ = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μq/kq

	t: μg/kg			
DATE A	11-12-97	11-12-97	11-12-97	
DATE EX	TRACTED		n/a	n/a
DILUTION	FACTOR		3	3
LAB SAMP	LE I.D.		97110054	97110055
CLIENT SAMPLE I.D.			B5-10.5	B6-10.5
COMPOUND MD		MB		
Bromodichloromethane	5.0	<5.0	<5.0	<5.0
Bromoform	5.0	<5.0	<5.0	<5.0
Bromomethane	5.0	<5.0	<5.0	<5.0
Carbon tetrachloride	5.0	<5.0	<5.0	<5.0
Chlorobenzene	5.0	<5.0	<5.0	<5.0
Chlorodibromomethane	5.0	<5.0	<5.0	<5.0
Chloromethane	10	<10	<10	<10
2-Chloroethyl vinyl ether	25	<25	<25	<25
Chloroform	5.0	<5.0	<5.0	<5.0
Chloromethane	10	<10	<10	<10
1,2-Dichlorobenzene	10	<10	<10	<10
1,3-Dichlorobenzene	10	<10	<10	<10
1,4-Dichlorobenzene	10	<10	<10	<10
1,1-Dichloroethane	5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene	5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene	5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene	5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	20	<20	<20	<20
Methylene chloride	25	<25	<25	<25
1,1,2,2-Tetrachloroethane	5.0	<5.0	<5.0	<5.0
Tetrachloroethene	5.0	<5.0	65	19
1,1,1-Trichloroethane	5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane	5.0	<5.0	<5.0	<5.0
Trichloroethene	5.0	<5.0	190	25
Trichlorofluoromethane	5.0	<5.0	<5.0	<5.0
Vinyl chloride	5.0	<5.0	<5.0	<5.0
SURROGATE SPK CONC	ACP%	MB %RC	%RC	
1,4-dichlorobutane 20	78-115	98	95	109

ADL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: μ g/kg

2-Chloroethyl vinyl ether			- μg/kg			
DILUTION FACTOR 3 3 3 3 3 3 3 3 3			11-11-97	11-11-97	11-11-97	
CLIENT SAMPLE I.D. 97110056 97110057		RACTED		n/a	n/a	
COMPOUND MDL MB Section Standard MB Section Standard Standa					3	3
Bromodichloromethane				97110056	97110057	
Bromodichloromethane	COMPOUND				B7-11	B8-11
Bromoform				MB		
Bromomethane			5.0	<5.0	<5.0	<5.0
Carbon tetrachloride			5.0	<5.0	<5.0	<5.0
Chlorobenzene			5.0	<5.0	<5.0	<5.0
Chlorodibromomethane			5.0	<5.0	<5.0	<5.0
Chloromethane		5.0	<5.0	<5.0	<5.0	
2-Chloroethyl vinyl ether			5.0	<5.0	<5.0	<5.0
Chloroform			10	<10	<10	<10
Chloromethane	2-Chloroethyl vinyl ether	-	25	<25	<25	<25
1,2-Dichlorobenzene		5.0	<5.0	<5.0	<5.0	
1,3-Dichlorobenzene		10	<10	<10	<10	
1,4-Dichlorobenzene 10 <10	1,3-Dichlorobenzene 1,4-Dichlorobenzene		10	<10	<10	<10
1,1-Dichloroethane 5.0 <5.0			10	<10	<10	<10
1,2-Dichloroethane 5.0 <5.0			10	<10	<10	<10
1,1-Dichloroethene 5.0 <5.0	- Carlotte Control of the Control of	5.0	<5.0	<5.0	<5.0	
Trans 1,2-Dichloroethene 5.0 <5.0 <5.0 <5.0 1,2-Dichloropropane 5.0 <5.0			5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane 5.0 <5.0			5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene 5.0 <5.0			5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene 20 <20			5.0	<5.0	<5.0	<5.0
Methylene chloride 25 <25	cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0
1,1,2,2-Tetrachloroethane 5.0 <5.0	trans-1,3-Dichloropropene	:	20	<20	<20	<20
Tetrachloroethene			25	<25	<25	<25
1,1,1-Trichloroethane 5.0 <5.0	Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene		5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane 5.0 <5.0			5.0	<5.0	<5.0	41
Trichloroethene 5.0 <5.0			5.0	<5.0	<5.0	<5.0
Trichlorofluoromethane 5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0			5.0	<5.0	<5.0	
Vinyl chloride 5.0 <5.0 <5.0 <5.0 SURROGATE SPK CONC ACP% MB %RC %RC			5.0	<5.0	<5.0	50
SURROGATE SPK ACP% MB %RC CONC %RC	· · · · · · · · · · · · · · · · · · ·		5.0	<5.0	<5.0	<5.0
SURROGATE SPK ACP% MB %RC CONC %RC	Vinyl chloride		5.0	<5.0	<5.0	<5.0
1,4-dichlorobutane 20 78-115 95 92 102	SURROGATE		ACP%		%RC	
	1,4-dichlorobutane	20	78-115	95	92	102

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: µg/kg

Reporting			t: μg/kg		
			11-11-97	11-11-97	11-11-97
	DATE EXT	RACTED		n/a	n/a
D:	ILUTION I	FACTOR		3	3
LAB SAMPLE I.D.				97110058	97110059
CLIENT SAMPLE I.D.				B9-10.5	B10-11
COMPOUND	MDL	MB			
Bromodichloromethane		5.0	<5.0	<5.0	<5.0
Bromoform		5.0	<5.0	<5.0	<5.0
Bromomethane		5.0	<5.0	<5.0	<5.0
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0
Chlorobenzene		5.0	<5.0	<5.0	<5.0
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
2-Chloroethyl vinyl ether		25	<25	<25	<25
Chloroform		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
1,2-Dichlorobenzene	10	<10	<10	<10	
1,3-Dichlorobenzene	10	<10	<10	<10	
1,4-Dichlorobenzene	10	<10	<10	<10	
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	;	20	<20	<20	<20
Methylene chloride		25	<25	<25	<25
1,1,2,2-Tetrachloroethane	! 	5.0	<5.0	<5.0	<5.0
Tetrachloroethene	5.0	<5.0	22	<5.0	
1,1,1-Trichloroethane 1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0
		5.0	<5.0	<5.0	<5.0
Trichloroethene		5.0	<5.0	41	36
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0
Vinyl chloride		5.0	<5.0	<5.0	<5.0
SURROGATE	SPK CONC	ACP%	MB %RC	%RC	
1,4-dichlorobutane	20	78-115	95	92	99

ADL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

Reporting Unit: μg/k DATE ANALYZED				
	11-11-97	11-11-97		
1		n/a		
D:		3		
L		97110060		
CLIE		B11-11		
COMPOUND	MDL	MB		
Bromodichloromethane	5.0	<5.0	<5.0	
Bromoform		5.0	<5.0	<5.0
Bromomethane		5.0	<5.0	<5.0
Carbon tetrachloride		5.0	<5.0	<5.0
Chlorobenzene		5.0	<5.0	<5.0
Chlorodibromomethane		5.0	<5.0	<5.0
Chloromethane		10	<10	<10
2-Chloroethyl vinyl ether	2	25	<25	<25
Chloroform		5.0	<5.0	<5.0
Chloromethane		10	<10	<10
1,2-Dichlorobenzene	10	<10	<10	
1,3-Dichlorobenzene	10	<10	<10	
1,4-Dichlorobenzene	10	<10	<10	
1,1-Dichloroethane	5.0	<5.0	<5.0	
1,2-Dichloroethane	5.0	<5.0	<5.0	
1,1-Dichloroethene		5.0	<5.0	<5.0
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0
1,2-Dichloropropane		5.0	<5.0	<5.0
cis-1,3-Dichloropropene		5.0	<5.0	<5.0
trans-1,3-Dichloropropene	1	20	<20	<20
Methylene chloride		25	<25	<25
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0
Tetrachloroethene		5.0	<5.0	<5.0
1,1,1-Trichloroethane	5.0	<5.0	<5.0	
1,1,2-Trichloroethane		5.0	<5.0	<5.0
Trichloroethene		5.0	<5.0	35
Trichlorofluoromethane		5.0	<5.0	<5.0
Vinyl chloride		5.0	<5.0	<5.0
SURROGATE	SPK	ACP%	МВ	%RC
	CONC		%RC	
1,4-dichlorobutane	20	78-115	95	85

ADL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 QA / QC REPORT Reporting Unit: μg/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 11/11/97

Batch #:

LAB Sample I . D . : 97110056

Analyte	R1	SP CONC	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethane	0.0	20	22	22	110	110	0	59-115	10
Trichloroethene	0.0	20	20	22	100	110	10	79-139	18
Tertachloroethene	0.0	20	22	23	110	115	4	50-141	11

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MSD ; RPD = Relative Percent Difference.

ACP = Acceptable Range of Percent ; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 11/11/97

Batch #:

LAB Sample I.D.: OCA 3880

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP %
1,1-Dicholoroethane	20	20	100	80- 120
1,1,1-Trichloroethane	20	19	95	80- 120
Bromoform	20	18	90	80- 120

ANALYST: Mitra Samiei	DATE:	11/12/97

3002 Dow Stife 622

3002 Dow, Suite 532 Tustin, CA 92680 (714) 832-0064, Fax (714) 832-0067

VIICAL, INC. Analysis I Chain of Cu

Analysis Request and Chain of Custody Record

Lab Job No:

N P

REQUIRED TATE

CUSTOMER INFORMATION						REQUIRED TAT:	What I was a supplementary	A TOTAL PROPERTY.	
COMPANY: ERLER + KATISTE	33.000	PROJECT INFORMATION	ORMATION	27:	Q,	1			
SENO REPORT TO STOLE WILLED	ALIMANE I NAME	WERB			ONLS.	10/2×	\ \ \		
ADDRESS: PECI 70 TH CT	NUMBER.	961025.02			1537.05		\ \ \		
020 MILE 1020	LOCATION				105/51	~ \	\ \ \	_	
SANTA MONICH, CA 10405	ADDRESS SON	n hun	hugar. Ir		THE TOWN		/		
PHORE 7. V. J. CO. T.		15	מסוק	ocup.	7/0/	`	\ \ \		
%	SAMPLED BY		U		24/ 92/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/		
AND SAMPLE TO THE STATE OF THE	10. OF SAMP		- 1		/5/2/	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \		
	CONTAINERS DATE		MATRIX	CONTAINER PRES.	8/33/ 	\ \ \ \ \ \ \	\ \		
8/-11	1 10/28/17	7:37	Soll B	Beks M) × ×	+		REMARKS/PRECAUTIONS	
	.	7:43	-	⊥	: ;				
		31	-	 	×				
61-20		2,7	+				50		T
82-5,5		1.08	+				1		T
82-10.5	+	6:70			×		200		
7 20		8:15			1				
42-6		72.8	+	+			\$ C		T
83-11		10.	1		×				1
84-6		14:8							
RULIO		3112			>		22		
V.0 10.		8116			< :	×			
64-16		0 1			×				T
84-20.5		12:1			×				
85-1		9:35					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
85-6		9:55			> ×	×	Han		
Total No of Sample:	A	00:00	7	7					
Dollary County of the County o	Method	d of Shipment:	 		┥				
Date/Tir	Receiv	Received Bv:		i					
48/82/01				Date/Time:		Reporting Fo	Reporting Format: (check)		T
Relinquished By: Date/Time:						NORMAL		ON HAMA	
	Hecely	neceived By:		Date/Time:			İ		
Relinquished By: Date/Time					i			OTHER	167
	Hecelo	Heceived For Lab By:	34:	Date/Tighe:		Sample Integrity:	Trihy. (chock)		T
	(ma)	" Islam	non	14411	01. 07	•			

All samples remain the property of the client who is responsible for disposal. A disposal fee may be imposed if client falls to pickup samples.

JIN E C. SI I WALY WAL, INC. 3002 Dow, Suite 532

(714) 832-0064, Fax (714) 832-0067

Tustin, CA 92680

Anially and Request and

0 Page_

M

Lab Job No: Chain of Custody Record

REMARKS/PRECAUTIONS S.D. HMMD OTHER Herd おも Sample Integrity: (check) 敌 Reporting Format: (check) を存 far toca **沙** NORMAL RWQCB REQUIRED TAT: X X AML VSISMETHOD REQUEST × × X × X X × × × × 8 × × X X × 6/82/01 Date/Time: Date/Time: Date/Time: PRES. કૃ 81B SAMPLE CONTAINER MATRIX TYPE 10/28/11/10:05 |801L BEASS PROJECT INFORMATION ADDRESS SOZO FIRESTONE mullim 6476 Regelved For Lab By: 20,52001 Method of Shipment: 82:2) 1:23 50:21 2%:21 12:57 13:15 SAMPLE 11:35 31:11 80:21 12:50 11:46 %;2/ 4/283 #:1 Received By: Received By: ROA SAMPLE Date PHONE: 310 314 8855 TAX: 310 314 8860 SAMPLED BY: PROJECT NAME LOCATION NUMBER WC. SPOTA MONICA, CA 90465 SUITE 1020 Date/Time: 60 / 28 / 97 Date/Time: EXIER + KALMOWSKI Date/Time: CUSTOMER INFORMATION SEND REPORT TO STEVE MILLER 2951 ZBT# ST. SAMPLE 10 Relinquished By: Ros Hesse Total No. of Samples: B5 - 10.5 BG - 10.5 Relinquished By: Relinquished By: 89-5.5 89-10,5 86 - 6 87-2 B10 - 6 11-18 88-2 8011 B7-6 BB-6 11-88 811-6

All samples remain the property of the clight who is responsible for disposal. A dispósal fee may be imposed if client falls to pickup samples.

UHE 3E C. ISTANALY INC. 3002 Dow, Suite 532

(714) 832-0064, Fax (714) 832-0067

Tustin, CA 92680

Analysis Request and

Chain of Custody Record

Lab Job No: Page _

₽

REMARKS/PRECAUTIONS Has 12 ch toca 松 the REQUIRED TAT: AMALYSIS METHOD AEOUEST THOD X X Date/Time: **7** ક 5030 FULLSTONE BLVD. EAMPLE CONTAINER MATRIX TYPE 8/18/17/18:20 Soll pers PROJECT INFORMATION 20,220196 Method of Shipment: SOUTH CATE 13:30 13:38 SAMPLE TIME 13:53 13:58 14:10 14:15 Received By: WEER SAMPLED BY KCH PROJECT NAME: SANTA MONICA, CA 90465 MODRESS LOCATION NUMBER NO. OF CONTAINERS PHONE: 34 34 8655 TX: 30 314 8860 ADDRESS: 2951 28 TH ST. SUITE 1020 COMPANT. ERLER + KALWOWSKI, WE. Date/Time: 10/28/97 CUSTOMER INFORMATION SAMPLE ID SAME SEND REPORT TO STEVE MULER Rob Hesse Total No. of Samples: Relinquished By: B12-6 11-118 B13-6 B12-11 BA-6 B/4 - 11 B13 - 11

All samples remain the property of the clight who is responsible for disposal. A disposal fee may be imposed if client fails to pickup samples. 7.00 An intact nuco

169

OTHER

Sample Integrity: (check)

S.D. HMMD

Reporting Format: (check)

NORMAL

RWQCB

Date/Time:

Received By:

Date/Time:

Relinquished By:

Date/Time:

Registed For Lab By:

Date/Time:

Relinquished By:

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

LABORATORY REPORT FORM						
Laboratory Name: Orange Coast Analytical						
Address: 3002 Dow Suite 532 Tustin, CA 92780						
Telephone: (714) 832-0064						
Laboratory Certification (ELAP) No.: 1416 Expiration Date: 1999						
Laboratory Director's Name (Print): Mark Noorani						
Laboratory Director's Signature: Mak Novani						
Client: Erler & Kalinowski, Inc. Project No.: 961025.00 Project Name: Webb Laboratory Reference: EKI 9783 Analytical Method: 8010						
Other						
Date Sampled: 12-02/03-97 Date Received: 12-05-97 Date Reported: 12-12-97						
Sample Matrix: H20 Extraction Method: n/a Extraction Material: n/a						
Chain of Custody Received: Yes_X_ Sample Condition: Chilled						
Sample Headspace Description (%): 0 Sample Container Material: Brass						

DATE:

ORANGE COAST ANALYTICAL, INC.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

FAX TRANSMITTAL

DATE:	<u>December 12, 1997</u>
COMPANY:	Erler & Kalinowski
ATTENTION:	Mr. Steve Miller
FROM:	Mark Noorani
PAGES:	COVER + <u>22</u>
PLEASE CONT	FACT US TO VERIFY THAT YOU RECEIVED ENTIRE TRANSMITTAL.
THANK YOU.	THE OF TO VERTIT THAT TOO RECEIVED ENTIRE TRANSMITTAL.

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

	Γ : μ g/kg	T = 2		
DATE	12-11-97	12-11-97	12-11-97	
DATE E		n/a	n/a	
DILUTIO		5	5	
LAB SAM		97120193	97120194	
CLIENT SAM	PLE I.D.		B15-10	B15-16
COMPOUND	MDL	MB		
Bromodichloromethane	5.0	<5.0	<5.0	<5.0
Bromoform	5.0	<5.0	<5.0	<5.0
Bromomethane	5.0	<5.0	<5.0	<5.0
Carbon tetrachloride	5.0	<5.0	<5.0	<5.0
Chlorobenzene	5.0	<5.0	<5.0	<5.0
Chlorodibromomethane	5.0	<5.0	<5.0	<5.0
Chloromethane	10	<10	<10	<10
2-Chloroethyl vinyl ether	25	<25	<25	<25
Chloroform	5.0	<5.0	<5.0	<5.0
Chloromethane	10	<10	<10	<10
1,2-Dichlorobenzene	10	<10	<10	<10
1,3-Dichlorobenzene	10	<10	<10	<10
1,4-Dichlorobenzene	10	<10	<10	<10
1,1-Dichloroethane	5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene	5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene	5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene	5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	20	<20	<20	<20
Methylene chloride	25	<25	<25	<25
1,1,2,2-Tetrachloroethane	5.0	<5.0	<5.0	<5.0
Tetrachloroethene	5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane	5.0	<5.0	<5.0	<5.0
Trichloroethene	5.0	<5.0	<5.0	<5.0
Trichlorofluoromethane	5.0	<5.0	<5.0	<5.0
Vinyl chloride	5.0	<5.0	<5.0	<5.0
SURROGATE SPK CONC	ACP%	MB %RC	%RC	
1,4-dichlorobutane 20	78-115	114	102	112

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL);
NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

Reporting Unit: μg/kg						
DATE ANALYZED			12-11-97	12-11-97	12-11-97	
DATE EXTRACTED				n/a	n/a	
DILUTION FACTOR				5	5	
LAB SAMPLE I.D.				97120195	97120196	
CLIE	NT SAMPLE	E I.D.		B15-20.5	B15-26.5	
COMPOUND		MDL	MB			
Bromodichloromethane		5.0	<5.0	<5.0	<5.0	
Bromoform		5.0	<5.0	<5.0	<5.0	
Bromomethane		5.0	<5.0	<5.0	<5.0	
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0	
Chlorobenzene		5.0	<5.0	<5.0	<5.0	
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0	
Chloromethane		10	<10	<10	<10	
2-Chloroethyl vinyl ether	<u> </u>	25	<25	<25	<25	
Chloroform		5.0	<5.0	<5.0	<5.0	
Chloromethane		10	<10	<10	<10	
1,2-Dichlorobenzene		10	<10	<10	<10	
1,3-Dichlorobenzene		10	<10	<10	<10	
1,4-Dichlorobenzene		10	<10	<10	<10	
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0	
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0	
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0	
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0	
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0	
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0	
trans-1,3-Dichloropropene	:	20	<20	<20	<20	
Methylene chloride	7	25	<25	<25	<25	
1,1,2,2-Tetrachloroethane	;	5.0	<5.0	<5.0	<5.0	
Tetrachloroethene		5.0	<5.0	<5.0	54	
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0	
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0	
Trichloroethene		5.0	<5.0	<5.0	380	
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0	
Vinyl chloride		5.0	<5.0	<5.0	<5.0	
SURROGATE	SPK CONC	ACP%	MB %RC	%RC		
1,4-dichlorobutane	20	78-115	114	114	115	
					1	

LADL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

Bromodichloromethane 5 Bromoform 5 Bromomethane 5 Carbon tetrachloride 5 Chlorobenzene 5 Chlorodibromomethane 5 Chloromethane 10 2-Chloroethyl vinyl ether 25	TED TOR	MB <5.0 <5.0 <5.0 <5.0	12-11-97 n/a 5 97120197 B15-31 <5.0 <5.0	12-11-97 n/a 5 97120198 B15-35.5
DILUTION FACTOR LAB SAMPLE I CLIENT SAMPLE I COMPOUND I Bromodichloromethane 5 Bromomethane 5 Carbon tetrachloride 5 Chlorobenzene 5 Chlorodibromomethane 5 Chloromethane 2 Chloromethane 2 Chloromethane 2 Chloromethane 2 Chloromethane 3 Chloromethane 4 Chloromethane 4 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethane 5 Chloromethan	TOR .D. MDL .0 .0 .0 .0 .0 .0	<5.0 <5.0 <5.0	5 97120197 B15-31 <5.0	5 97120198 B15-35.5
CLIENT SAMPLE I COMPOUND Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloromethane Chloromethyl vinyl ether Chloromethyl vinyl ether	.D. MDL .0 .0 .0 .0	<5.0 <5.0 <5.0	97120197 B15-31 <5.0	5 97120198 B15-35.5
CLIENT SAMPLE I COMPOUND Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloromethane Chloromethane 2-Chloroethyl vinyl ether	.D. MDL .0 .0 .0 .0	<5.0 <5.0 <5.0	B15-31 <5.0	B15-35.5
COMPOUNDIBromodichloromethane5Bromoform5Bromomethane5Carbon tetrachloride5Chlorobenzene5Chlorodibromomethane5Chloromethane102-Chloroethyl vinyl ether25	MDL .0 .0 .0 .0	<5.0 <5.0 <5.0	<5.0	B15-35.5
Bromodichloromethane 5 Bromoform 5 Bromomethane 5 Carbon tetrachloride 5 Chlorobenzene 5 Chlorodibromomethane 5 Chloromethane 10 2-Chloroethyl vinyl ether 25	.0 .0 .0 .0 .0 .0	<5.0 <5.0 <5.0		
Bromoform 5 Bromomethane 5 Carbon tetrachloride 5 Chlorobenzene 5 Chlorodibromomethane 5 Chloromethane 10 2-Chloroethyl vinyl ether 25	.0	<5.0 <5.0		-5 O
Bromomethane 5 Carbon tetrachloride 5 Chlorobenzene 5 Chlorodibromomethane 5 Chloromethane 10 2-Chloroethyl vinyl ether 25	.0	<5.0	<5.0	< 3.0
Carbon tetrachloride 5 Chlorobenzene 5 Chlorodibromomethane 5 Chloromethane 10 2-Chloroethyl vinyl ether 25	.0			<5.0
Chlorobenzene 5. Chlorodibromomethane 5. Chloromethane 10. 2-Chloroethyl vinyl ether 25.	. 0	<u> </u>	<5.0	<5.0
Chlorodibromomethane 5. Chloromethane 10. 2-Chloroethyl vinyl ether 25.		\J. U]	<5.0	<5.0
Chloromethane 10 2-Chloroethyl vinyl ether 25	.0	<5.0	<5.0	<5.0
2-Chloroethyl vinyl ether 25		<5.0	<5.0	<5.0
	0	<10	<10	<10
~17 6	5	<25	<25	<25
	. 0	<5.0	<5.0	<5.0
Chloromethane 10	0	<10	<10	<10
1,2-Dichlorobenzene 10	0	<10	<10	<10
1,3-Dichlorobenzene 10	0	<10	<10	<10
1,4-Dichlorobenzene 10	0	<10	<10	<10
1,1-Dichloroethane 5.	. 0	<5.0	<5.0	<5.0
1,2-Dichloroethane 5.	. 0	<5.0	<5.0	<5.0
1,1-Dichloroethene 5.	. 0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene 5.	. 0	<5.0	<5.0	<5.0
1,2-Dichloropropane 5.	. 0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene 5.	. 0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene 20		<20	<20	<20
Methylene chloride 25	5	<25	<25	<25
1,1,2,2-Tetrachloroethane 5.	. 0	<5.0	<5.0	<5.0
Tetrachloroethene 5.	. 0	<5.0	41	26
1,1,1-Trichloroethane 5.	.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane 5.	. 0	<5.0	<5.0	<5.0
Trichloroethene 5.	. 0	<5.0	520	140
Trichlorofluoromethane 5.	0	<5.0	<5.0	<5.0
Vinyl chloride 5.	0	<5.0	<5.0	<5.0
SURROGATE SPK AC CONC	P%	MB %RC	%RC	
1,4-dichlorobutane 20 78				11

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: µg/kg

DATE EXTRACTED	Reporting Unit: μg/kg						
DILUTION FACTOR S 20	DATE ANALYZED			12-11-97	12-11-97	12-11-97	
DILUTION FACTOR S DILUTION FACTOR LAB SAMPLE I.D. 97120199 97120200	DATE EXTRACTED				n/a	n/a	
CLIENT SAMPLE I.D. B15-40 B15-44.5	DILUTION FACTOR				5		
Bromodichloromethane	LAB SAMPLE I.D.				97120199	97120200	
Bromodichloromethane	CLIEN	T SAMPLE	I.D.		B15-40	B15-44.5	
Bromoform	COMPOUND		MDL	MB			
Bromomethane	Bromodichloromethane		5.0	<5.0	<5.0	<5.0	
Carbon tetrachloride	Bromoform		5.0	<5.0	<5.0	<5.0	
Chlorobenzene			5.0	<5.0	<5.0	<5.0	
Chlorodibromomethane	1 L		5.0	<5.0	<5.0	<5.0	
Chloromethane			5.0	<5.0	<5.0	<5.0	
2-Chloroethyl vinyl ether			5.0	<5.0	<5.0	<5.0	
Chloroform			10	<10	<10	<10	
Chloromethane			25	<25	<25	<25	
1,2-Dichlorobenzene			5.0	<5.0	<5.0	<5.0	
1,3-Dichlorobenzene 10 <10			10	<10	<10	<10	
1,4-Dichlorobenzene			10	<10	<10	<10	
1,1-Dichloroethane 5.0 <5.0			10	<10	<10	<10	
1,2-Dichloroethane 5.0 <5.0				<10	<10	<10	
1,1-Dichloroethene			5.0	<5.0	<5.0	<5.0	
Trans 1,2-Dichloroethene 5.0 <5.0 <5.0 <5.0 1,2-Dichloropropane 5.0 <5.0				<5.0	<5.0	<5.0	
1,2-Dichloropropane 5.0 <5.0			5.0	<5.0	<5.0	<5.0	
cis-1,3-Dichloropropene 5.0 <5.0		•		<5.0	<5.0	<5.0	
trans-1,3-Dichloropropene 20 <20	1,2-Dichloropropane			<5.0	<5.0	<5.0	
Methylene chloride 25 <25				<5.0	<5.0	<5.0	
1,1,2,2-Tetrachloroethane 5.0 <5.0				<20	<20	<20	
Tetrachloroethene 5.0 <5.0				<25	<25	<25	
1,1,1-Trichloroethane 5.0 <5.0				<5.0	<5.0	<5.0	
1,1,2-Trichloroethane 5.0 <5.0			5.0	<5.0	<5.0	<5.0	
Trichloroethene 5.0 <5.0 1,200 1,300 Trichlorofluoromethane 5.0 <5.0				<5.0	<5.0	<5.0	
Trichlorofluoromethane 5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0			5.0	<5.0	<5.0	<5.0	
Vinyl chloride 5.0 <5.0					1,200	1,300	
SURROGATE SPK ACP% MB %RC CONC CONC			5.0	<5.0	<5.0	<5.0	
CONC %RC	Vinyl chloride		5.0	<5.0	< 5.0	<5.0	
1,4-dichlorobutane 20 78-115 114 100 109	SURROGATE		ACP%		%RC		
	1,4-dichlorobutane	20	78-115	114	100	109	

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: μ g/kg

Reporting onit: μg/kg						
DATE ANALYZED			12-11-97	12-11-97	12-05-97	
DATE EXTRACTED				n/a	n/a	
DILUTION FACTOR				5	10	
LAB SAMPLE I.D.				97120201	97120202	
CLIE	NT SAMPLI	E I.D.		B16-6	B16-11	
COMPOUND		MDL	MB			
Bromodichloromethane		5.0	<5.0	<5.0	<5.0	
Bromoform		5.0	<5.0	<5.0	<5.0	
Bromomethane		5.0	<5.0	<5.0	<5.0	
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0	
Chlorobenzene		5.0	<5.0	<5.0	<5.0	
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0	
Chloromethane		10	<10	<10	<10	
2-Chloroethyl vinyl ether	-	25	<25	<25	<25	
Chloroform		5.0	<5.0	<5.0	<5.0	
Chloromethane		10	<10	<10	<10	
1,2-Dichlorobenzene		10	<10	<10	<10	
1,3-Dichlorobenzene		10	<10	<10	<10	
1,4-Dichlorobenzene		10	<10	<10	<10	
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0	
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0	
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0	
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0	
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0	
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0	
trans-1,3-Dichloropropene		20	<20	<20	<20	
Methylene chloride		25	<25	<25	<25	
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0	
Tetrachloroethene		5.0	<5.0	<5.0	<5.0	
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0	
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0	
Trichloroethene		5.0	<5.0	<5.0	<5.0	
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0	
Vinyl chloride		5.0	<5.0	<5.0	<5.0	
SURROGATE	SPK CONC	ACP%	MB %RC	%RC		
1,4-dichlorobutane	20	78-115	114	104	105	
			<u> </u>			

LADL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: µg/kg

Reporting Unit: μ g/kg					
	DATE AND	ALYZED	12-08-97	12-08-97	12-08-97
				 	,
DATE EXTRACTED				n/a	n/a
DILUTION FACTOR LAB SAMPLE I.D.				5	5
				97120203	97120204
COMPOUND	NT SAMPLE	· · · · · · · · · · · · · · · · · · ·	100	B16-16	B16-21
		MDL	MB	<u> </u>	
Bromodichloromethane		5.0	<5.0	<5.0	<5.0
Bromoform		5.0	<5.0	<5.0	<5.0
Bromomethane		5.0	<5.0	<5.0	<5.0
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0
Chlorobenzene		5.0	<5.0	<5.0	<5.0
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
2-Chloroethyl vinyl ether	:	25	<25	<25	<25
Chloroform		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
1,2-Dichlorobenzene		10	<10	<10	<10
1,3-Dichlorobenzene		10	<10	<10	<10
1,4-Dichlorobenzene		10	<10	<10	<10
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene		20	<20	<20	<20
Methylene chloride		25	<25	<25	<25
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0
Tetrachloroethene		5.0	<5.0	27	41
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0
Trichloroethene		5.0	<5.0	<5.0	<5.0
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0
Vinyl chloride		5.0	<5.0	<5.0	<5.0
SURROGATE	SPK CONC	ACP%	MB %RC	%RC	
1,4-dichlorobutane	20	78-115	98	95	101

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

Reporting Unit: μg/kg						
DATE ANALYZED			12-08-97	12-08-97	12-08-97	
	+	n/a	n/a			
DILUTION FACTOR				5	5	
LAB SAMPLE I.D.				97120205	97120206	
CLIE	NT SAMPLE	I.D.		B16-26	B16-31	
COMPOUND		MDL	MB			
Bromodichloromethane		5.0	<5.0	<5.0	<5.0	
Bromoform		5.0	<5.0	<5.0	<5.0	
Bromomethane		5.0	<5.0	<5.0	<5.0	
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0	
Chlorobenzene		5.0	<5.0	<5.0	<5.0	
Chlorodibromomethane	****	5.0	<5.0	<5.0	<5.0	
Chloromethane		10	<10	<10	<10	
2-Chloroethyl vinyl ether	r	25	<25	<25	<25	
Chloroform		5.0	<5.0	<5.0	<5.0	
Chloromethane		10	<10	<10	<10	
1,2-Dichlorobenzene		10	<10	<10	<10	
1,3-Dichlorobenzene		10	<10	<10	<10	
1,4-Dichlorobenzene		10	<10	<10	<10	
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0	
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0	
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0	
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0	
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0	
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0	
trans-1,3-Dichloropropene	2	20	<20	<20	<20	
Methylene chloride		25	<25	<25	<25	
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0	
Tetrachloroethene		5.0	<5.0	47	27	
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0	
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0	
Trichloroethene		5.0	<5.0	<5.0	<5.0	
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0	
Vinyl chloride		5.0	<5.0	<5.0	<5.0	
SURROGATE	SPK CONC	ACP%	MB %RC	%RC		
1,4-dichlorobutane	20	78-115	98	109	97	

ADL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

DATE ANALYZED 12-08-97 12-08-97 12-08-97 DATE EXTRACTED n/a n/a DILUTION FACTOR 5 5 LAB SAMPLE I.D. 97120207 97120208 CLIENT SAMPLE I.D. B16-35.5 B16-41 COMPOUND MDL MB Bromodichloromethane 5.0 < 5.0 < 5.0 < 5.0 Bromoform 5.0 < 5.0 <5.0 < 5.0 Bromomethane 5.0 < 5.0 < 5.0 < 5.0 Carbon tetrachloride <5.0 5.0 <5.0 < 5.0 Chlorobenzene 5.0 <5.0 <5.0 < 5.0 Chlorodibromomethane 5.0 < 5.0 <5.0 < 5.0 Chloromethane 10 <10 <10 <10 2-Chloroethyl vinyl ether 25 < 25 < 25 <25 Chloroform 5.0 < 5.0 < 5.0 <5.0 Chloromethane 10 <10 <10 <10 1,2-Dichlorobenzene 10 <10 <10 <10 1,3-Dichlorobenzene 10 <10 < 10 <10 1,4-Dichlorobenzene 10 <10 <10 <10 1,1-Dichloroethane 5.0 <5.0 < 5.0 <5.0 1,2-Dichloroethane 5.0 < 5.0 <5.0 < 5.0 1,1-Dichloroethene 5.0 < 5.0 <5.0 <5.0 Trans 1,2-Dichloroethene 5.0 <5.0 < 5.0 < 5.0 1,2-Dichloropropane 5.0 <5.0 < 5.0 <5.0 cis-1,3-Dichloropropene 5.0 <5.0 < 5.0 <5.0 trans-1,3-Dichloropropene 20 <20 <20 <20 Methylene chloride 25 <25 <25 <25 1,1,2,2-Tetrachloroethane 5.0 <5.0 < 5.0 < 5.0 Tetrachloroethene 5.0 < 5.0 <5.0 <5.0 1,1,1-Trichloroethane 5.0 < 5.0 < 5.0 <5.0 1,1,2-Trichloroethane 5.0 < 5.0 < 5.0 < 5.0 Trichloroethene 5.0 <5.0 < 5.0 410 Trichlorofluoromethane 5.0 < 5.0 <5.0 < 5.0 Vinyl chloride 5.0 < 5.0 < 5.0 <5.0 SURROGATE SPK ACP% MB %RC CONC %RC 1,4-dichlorobutane 20 78-115 98 100 103

 $\mathtt{MDL} = \mathtt{Method}$ Detection Limit; $\mathtt{MB} = \mathtt{Method}$ Blank; $\mathtt{ND} = \mathtt{Not}$ Detected (Below MDL); $\mathtt{NA} = \mathtt{Not}$ Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

DATE ANALYZED 12-08-97 12-08-97 12-08-97 DATE EXTRACTED n/a n/a DILUTION FACTOR 5 LAB SAMPLE I.D. 97120209 97120210 CLIENT SAMPLE I.D. B16-46 B16-51 COMPOUND MDL MB Bromodichloromethane 5.0 < 5.0 < 5.0 < 5.0 Bromoform 5.0 <5.0 <5.0 <5.0 Bromomethane 5.0 <5.0 <5.0 < 5.0 Carbon tetrachloride 5.0 <5.0 < 5.0 < 5.0 Chlorobenzene 5.0 <5.0 <5.0 <5.0 Chlorodibromomethane 5.0 < 5.0 < 5.0 < 5.0 Chloromethane 10 <10 <10 <10 2-Chloroethyl vinyl ether 25 <25 <25 <25 Chloroform 5.0 < 5.0 <5.0 < 5.0 Chloromethane 10 <10 < 10 <10 1,2-Dichlorobenzene 10 <10 <10 <10 1,3-Dichlorobenzene 10 <10 < 1.0 <10 1,4-Dichlorobenzene 10 <10 <10 <10 1,1-Dichloroethane 5.0 <5.0 < 5.0 <5.0 1,2-Dichloroethane 5.0 <5.0 <5.0 <5.0 1,1-Dichloroethene 5.0 < 5.0 < 5.0 <5.0 Trans 1,2-Dichloroethene 5.0 <5.0 < 5.0 < 5.0 1,2-Dichloropropane 5.0 <5.0 < 5.0 <5.0 cis-1,3-Dichloropropene 5.0 <5.0 <5.0 <5.0 trans-1,3-Dichloropropene 20 <20 <20 <20 Methylene chloride 25 <25 <25 <25 1,1,2,2-Tetrachloroethane 5.0 <5.0 <5.0 <5.0 Tetrachloroethene 5.0 <5.0 < 5.0 <5.0 1,1,1-Trichloroethane 5.0 <5.0 < 5.0 < 5.0 1,1,2-Trichloroethane 5.0 <5.0 <5.0 <5.0 Trichloroethene 5.0 <5.0 390 1,300 Trichlorofluoromethane 5.0 <5.0 < 5.0 <5.0 Vinyl chloride 5.0 < 5.0 < 5.0 <5.0 SURROGATE SPK ACP% MB %RC CONC %RC 1,4-dichlorobutane 20 78-115 98 99 90

 $\mathtt{MDL} = \mathtt{Method}$ Detection Limit; $\mathtt{MB} = \mathtt{Method}$ Blank; $\mathtt{ND} = \mathtt{Not}$ Detected (Below MDL); $\mathtt{NA} = \mathtt{Not}$ Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

	DATE ANA		12-08-97	12-08-97	12-08-97
					12 00 37
	DATE EXT	RACTED		n/a	n/a
D	ILUTION E	FACTOR		5	5
L	AB SAMPLE	E I.D.		97120211	97120212
CLIE	NT SAMPLE	E I.D.		B17-6	B17-11
COMPOUND		MDL	MB		
Bromodichloromethane	····	5.0	<5.0	<5.0	<5.0
Bromoform		5.0	<5.0	<5.0	<5.0
Bromomethane		5.0	<5.0	<5.0	<5.0
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0
Chlorobenzene		5.0	<5.0	<5.0	<5.0
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
2-Chloroethyl vinyl ether		25	<25	<25	<25
Chloroform		5.0	<5.0	<5.0	<5.0
Chloromethane		10	<10	<10	<10
1,2-Dichlorobenzene		10	<10	<10	<10
1,3-Dichlorobenzene		10	<10	<10	<10
1,4-Dichlorobenzene		10	<10	<10	<10
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene		20	<20	<20	<20
Methylene chloride		25	<25	<25	<25
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0
Tetrachloroethene		5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0
Trichloroethene		5.0	<5.0	<5.0	<5.0
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0
Vinyl chloride		5.0	<5.0	<5.0	<5.0
SURROGATE	SPK	ACP%	MB	%RC	
	CONC	-	%RC		
1,4-dichlorobutane	20	78-115	98	101	102

 $ext{MDL} = ext{Method}$ Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); $ext{NA} = ext{Not}$ Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

Reporting offic: μg/kg							
DATE ANALYZED			12-08-97	12-08-97	12-08-97		
DATE EXTRACTED				n/a	n/a		
D:	LLUTION E	FACTOR		5	5		
L	AB SAMPLE	E I.D.		97120213	97120214		
	NT SAMPLE	E I.D.		B17-16	B17-21		
COMPOUND		MDL	MB				
Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
Bromoform		5.0	<5.0	<5.0	<5.0		
Bromomethane		5.0	<5.0	<5.0	<5.0		
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0		
Chlorobenzene		5.0	<5.0	<5.0	<5.0		
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
2-Chloroethyl vinyl ether		25	<25	<25	<25		
Chloroform		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
1,2-Dichlorobenzene		10	<10	<10	<10		
1,3-Dichlorobenzene		10	<10	<10	<10		
1,4-Dichlorobenzene		10	<10	<10	<10		
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0		
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0		
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0		
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0		
trans-1,3-Dichloropropene		20	<20	<20	<20		
Methylene chloride		25	<25	<25	<25		
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0		
Tetrachloroethene		5.0	<5.0	<5.0	<5.0		
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0		
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0		
Trichloroethene		5.0	<5.0	<5.0	<5.0		
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0		
Vinyl chloride		5.0	<5.0	<5.0	<5.0		
SURROGATE	SPK CONC	ACP%	MB %RC	%RC			
1,4-dichlorobutane	20	78-115	91	100	102		
					1		

 $^{\mathrm{MDL}}$ = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); $^{\mathrm{IA}}$ = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT

Reporting Unit: $\mu g/kg$

DATE ANALYZED 12-08-97 12-08-97 12-08-97							
	DATE ANALYZED			12-08-97	12-08-97		
	DATE EXT	RACTED		n/a	n/a		
D	ILUTION 1	FACTOR		5	5		
L	AB SAMPLI	E I.D.		97120215	97120216		
CLIE	NT SAMPLI	E I.D.		B17-26	B17-31.5		
COMPOUND		MDL	MB				
Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
Bromoform		5.0	<5.0	<5.0	<5.0		
Bromomethane		5.0	<5.0	<5.0	<5.0		
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0		
Chlorobenzene		5.0	<5.0	<5.0	<5.0		
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
2-Chloroethyl vinyl ether	r	25	<25	<25	<25		
Chloroform		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
1,2-Dichlorobenzene		10	<10	<10	<10		
1,3-Dichlorobenzene		10	<10	<10	<10		
1,4-Dichlorobenzene		10	<10	<10	<10		
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0		
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0		
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0		
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0		
trans-1,3-Dichloropropene	}	20	<20	<20	<20		
Methylene chloride		25	<25	<25	<25		
1,1,2,2-Tetrachloroethane	}	5.0	<5.0	<5.0	<5.0		
Tetrachloroethene		5.0	<5.0	<5.0	<5.0		
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0		
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0		
Trichloroethene		5.0	<5.0	48	56		
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0		
Vinyl chloride		5.0	<5.0	<5.0	<5.0		
SURROGATE	SPK CONC	ACP%	MB %RC	%RC			
1,4-dichlorobutane	20	78-115	91	104	106		

 $^{\mathrm{MDL}}$ = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); $^{\mathrm{NDL}}$ = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

Ī	Reporting onic: μg/kg							
	DATE ANALYZED			12-08-97	12-08-97	12-08-97		
	DATE EXTRACTED				n/a	n/a		
	D	LUTION E	ACTOR		5	5		
	L	AB SAMPLE	E I.D.		97120217	97120218		
	CLIEN	T SAMPLE	I.D.		B17-36	B17-41		
ıL	COMPOUND		MDL	MB				
	Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
	Bromoform		5.0	<5.0	<5.0	<5.0		
ſ 'L	Bromomethane		5.0	<5.0	<5.0	<5.0		
	Carbon tetrachloride		5.0	<5.0	<5.0	<5.0		
L	Chlorobenzene		5.0	<5.0	<5.0	<5.0		
	Chlorodibromomethane		5.0	<5.0	<5.0	<5.0		
┖	Chloromethane		10	<10	<10	<10		
	2-Chloroethyl vinyl ether	•	25	<25	<25	<25		
	Chloroform		5.0	<5.0	<5.0	<5.0		
11—	Chloromethane		10	<10	<10	<10		
	1,2-Dichlorobenzene		10	<10	<10	<10		
_	1,3-Dichlorobenzene		10	<10	<10	<10		
	1,4-Dichlorobenzene		10	<10	<10	<10		
	1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0		
	1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0		
	1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0		
	Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0		
	1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0		
	cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0		
	trans-1,3-Dichloropropene		20	<20	<20	<20		
	Methylene chloride		25	<25	<25	<25		
	1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0		
_	Tetrachloroethene		5.0	<5.0	<5.0	<5.0		
	1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0		
	1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0		
_	Trichloroethene		5.0	<5.0	1,400	1,200		
-	Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0		
/ ==	Vinyl chloride		5.0	<5.0	<5.0	<5.0		
Ĭ <u></u>	SURROGATE	SPK CONC	ACP%	MB %RC	%RC			
]	l,4-dichlorobutane	20	78-115	91	104	93		
						L		

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

Reporting Unit: ug/kg

DATE ANALYZED		Reporting Unit: $\mu g/kg$							
DILUTION FACTOR	F -	DATE ANALYZED			12-08-97	12-08-97			
DILUTION FACTOR	Dama pumpa com				 				
CLIENT SAMPLE I.D. 97120219 97120220									
CLIENT SAMPLE I.D. B17-46 B17-53.5	· · · · · · · · · · · · · · · · · · ·								
Bromodichloromethane									
Bromodichloromethane		NI SAMPLI		MB	B17-46	B17-53.5			
Bromoform	1				<u> </u>				
Simple S									
Carbon tetrachloride									
Chlorobenzene									
Chlorodibromomethane	·								
Chloromethane			1						
2-Chloroethyl vinyl ether									
Chloroform		_							
Chloromethane	Chloroform	-							
1,2-Dichlorobenzene									
1,3-Dichlorobenzene 10 <10									
1,4-Dichlorobenzene 10 <10									
1,1-Dichloroethane									
1,2-Dichloroethane									
1,1-Dichloroethene 5.0 <5.0									
Trans 1,2-Dichloroethene 5.0 <5.0									
1,2-Dichloropropane 5.0 <5.0					<u> </u>				
cis-1,3-Dichloropropene 5.0 <5.0	1.2-Dichloropropage				ļ <u> </u>				
trans-1,3-Dichloropropene 20 <20				<u> </u>					
Methylene chloride 25 <25									
1,1,2,2-Tetrachloroethane 5.0 <5.0									
Tetrachloroethene 5.0 <5.0									
1,1,1-Trichloroethane 5.0 <5.0									
1,1,2-Trichloroethane 5.0 <5.0									
Trichloroethene 5.0 <5.0 1,600 1,400 Trichlorofluoromethane 5.0 <5.0									
Trichlorofluoromethane 5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0									
Vinyl chloride 5.0 <5.0 <5.0 <5.0 SURROGATE SPK CONC ACP% MB %RC %RC									
SURROGATE SPK ACP% MB %RC									
CONC %RC						<5.0			
1,4-dichlorobutane 20 78-115 91 103 103		1	ACP%		%RC				
	1,4-dichlorobutane	20	78-115	91	103	103			

 $^{
m MDL}$ = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); $^{
m IA}$ = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

	Reporting Unit: μg/kg							
ľ		DATE AND	ALYZED	12-08-97	12-08-97	12-09-97		
	DATE EXTRACTED				n/a	n/a		
_	D:	ILUTION I	FACTOR		5	5		
	L	AB SAMPLE	E I.D.		97120221	97120222		
	CLIE	NT SAMPLE	I.D.		B18-11	B18-16		
	COMPOUND		MDL	MB				
	Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
	Bromoform		5.0	<5.0	<5.0	<5.0		
F	Bromomethane		5.0	<5.0	<5.0	<5.0		
	Carbon tetrachloride		5.0	<5.0	<5.0	<5.0		
	Chlorobenzene		5.0	<5.0	<5.0	<5.0		
i	Chlorodibromomethane		5.0	<5.0	<5.0	<5.0		
	Chloromethane		10	<10	<10	<10		
	2-Chloroethyl vinyl ether	•	25	<25	<25	<25		
	Chloroform		5.0	<5.0	<5.0	<5.0		
١	Chloromethane		10	<10	<10	<10		
,	1,2-Dichlorobenzene		10	<10	<10	<10		
	1,3-Dichlorobenzene		10	<10	<10	<10		
	1,4-Dichlorobenzene		10	<10	<10	<10		
. 1	1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0		
	1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0		
	1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0		
- 1	Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0		
1	1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0		
	cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0		
	trans-1,3-Dichloropropene		20	<20	<20	<20		
1	Methylene chloride		25	<25	<25	<25		
	1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0		
-	Tetrachloroethene		5.0	<5.0	400	370		
	1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0		
	1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0		
4	Trichloroethene		5.0	<5.0	110	610		
1	Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0		
	Vinyl chloride		5.0	<5.0	<5.0	<5.0		
<u> </u>	SURROGATE	SPK CONC	ACP%	MB %RC	%RC			
	1,4-dichlorobutane	20	78-115	91	101	100		

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL);
VA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

DATE ANALYZED	Reporting onit: μg/kg							
DILUTION FACTOR	DATE ANALYZED			12-09-97	12-09-97	12-09-97		
DILUTION FACTOR	1	DATE EXTR	RACTED		n/a	n/a		
CLIENT SAMPLE I.D. B18-21 B18-27					<u> </u>			
COMPOUND MDL MB								
Bromodichloromethane								
Bromoform	COMPOUND		MDL	MB				
Bromoform	Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
Bromomethane	Bromoform		5.0	<u> </u>	<u> </u>			
Carbon tetrachloride	Bromomethane		5.0					
Chlorobenzene	Carbon tetrachloride		5.0	<5.0	<5.0			
Chlorodibromomethane	Chlorobenzene		5.0	<5.0	<5.0	<u> </u>		
Chloromethane	Chlorodibromomethane		5.0	<5.0				
Chloroform	iL		10	<10	<10			
Chloromethane	2-Chloroethyl vinyl ether	•	25	<25	<25	<25		
1,2-Dichlorobenzene	Chloroform		5.0	<5.0	<5.0	<5.0		
1,3-Dichlorobenzene	Chloromethane		10	<10	<10	<10		
1,4-Dichlorobenzene 10 <10			10	<10	<10	<10		
1,1-Dichloroethane 5.0 <5.0	The state of the s		10	<10	<10	<10		
1,2-Dichloroethane			10	<10	<10	<10		
1,1-Dichloroethene 5.0 <5.0			5.0	<5.0	<5.0	<5.0		
Trans 1,2-Dichloroethene 5.0 <5.0 <5.0 <5.0 1,2-Dichloropropane 5.0 <5.0	I — — — — — — — — — — — — — — — — — — —		5.0	<5.0	<5.0	<5.0		
1,2-Dichloropropane 5.0 <5.0			5.0	<5.0	<5.0	<5.0		
cis-1,3-Dichloropropene 5.0 <5.0			5.0	<5.0	<5.0	<5.0		
trans-1,3-Dichloropropene 20 <20			5.0	<5.0	<5.0	<5.0		
Methylene chloride 25 <25			5.0	<5.0	<5.0	<5.0		
1,1,2,2-Tetrachloroethane 5.0 <5.0				<20	<20	<20		
Tetrachloroethene 5.0 <5.0			25	<25	<25	<25		
1,1,1-Trichloroethane 5.0 <5.0			5.0	<5.0	<5.0	<5.0		
1,1,2-Trichloroethane 5.0 <5.0				<5.0	660	93		
Trichloroethene 5.0 <5.0	·		5.0	<5.0	<5.0	<5.0		
Trichlorofluoromethane 5.0 <5.0 <5.0 <5.0 Vinyl chloride 5.0 <5.0				<5.0	<5.0	<5.0		
Vinyl chloride 5.0 <5.0 <5.0 <5.0 SURROGATE SPK CONC ACP% NB MB %RC					16,000	750		
SURROGATE SPK ACP% MB %RC CONC %RC			5.0	<5.0	<5.0	<5.0		
CONC %RC	Vinyl chloride		5.0	<5.0	<5.0	<5.0		
1,4-dichlorobutane 20 78-115 97 105 101	SURROGATE		ACP%		%RC			
	1,4-dichlorobutane	20	78-115	97	105	101		

IDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL);
IA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

DATE ANALYZED 12-09-97 12-09-97 12-09-97							
DATE A	HALL AED	12-09-97	12-09-9/	12-09-97			
DATE EXT		n/a	n/a				
DILUTION	FACTOR		5	5			
LAB SAMPI	LE I.D.		97120225	97120226			
CLIENT SAMPI	E I.D.		B18-31	B18-36			
COMPOUND	MDL	MB					
Bromodichloromethane	5.0	<5.0	<5.0	<5.0			
Bromoform	5.0	<5.0	<5.0	<5.0			
Bromomethane	5.0	<5.0	<5.0	<5.0			
Carbon tetrachloride	5.0	<5.0	<5.0	<5.0			
Chlorobenzene	5.0	<5.0	<5.0	<5.0			
Chlorodibromomethane	5.0	<5.0	<5.0	<5.0			
Chloromethane	10	<10	<10	<10			
2-Chloroethyl vinyl ether	25	<25	<25	<25			
Chloroform	5.0	<5.0	<5.0	<5.0			
Chloromethane	10	<10	<10	<10			
1,2-Dichlorobenzene	10	<10	<10	<10			
1,3-Dichlorobenzene	10	<10	<10	<10			
1,4-Dichlorobenzene	10	<10	<10	<10			
1,1-Dichloroethane	5.0	<5.0	<5.0	<5.0			
1,2-Dichloroethane	5.0	<5.0	<5.0	<5.0			
1,1-Dichloroethene	5.0	<5.0	<5.0	<5.0			
Trans 1,2-Dichloroethene	5.0	<5.0	<5.0	<5.0			
1,2-Dichloropropane	5.0	<5.0	<5.0	<5.0			
cis-1,3-Dichloropropene	5.0	<5.0	<5.0	<5.0			
trans-1,3-Dichloropropene	20	<20	<20	<20			
Methylene chloride	25	<25	<25	<25			
1,1,2,2-Tetrachloroethane	5.0	<5.0	<5.0	<5.0			
Tetrachloroethene	5.0	<5.0	140	<5.0			
1,1,1-Trichloroethane	5.0	<5.0	<5.0	<5.0			
1,1,2-Trichloroethane	5.0	<5.0	<5.0	<5.0			
Trichloroethene	5.0	<5.0	2,000	56			
Trichlorofluoromethane	5.0	<5.0	<5.0	<5.0			
Vinyl chloride	5.0	<5.0	<5.0	<5.0			
SURROGATE SPK CONC	ACP%	MB %RC	%RC				
1,4-dichlorobutane 20	78-115	97	103	101			

 $\mathtt{MDL} = \mathtt{Method}$ Detection Limit; $\mathtt{MB} = \mathtt{Method}$ Blank; $\mathtt{ND} = \mathtt{Not}$ Detected (Below MDL); $\mathtt{NA} = \mathtt{Not}$ Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

Reporting Unit: μg/kg							
DATE ANALYZED			12-09-97	12-09-97	12-09-97		
I	DATE EXTR	RACTED		n/a	n/a		
D:	LUTION F	FACTOR		5	20		
L	AB SAMPLE	E I.D.		97120227	97120228		
CLIEN	T SAMPLE	E I.D.		B18-41	B18-46		
COMPOUND		MDL	MB				
Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
Bromoform		5.0	<5.0	<5.0	<5.0		
Bromomethane		5.0	<5.0	<5.0	<5.0		
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0		
Chlorobenzene		5.0	<5.0	<5.0	<5.0		
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
2-Chloroethyl vinyl ether	•	25	<25	<25	<25		
Chloroform		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
1,2-Dichlorobenzene		10	<10	<10	<10		
1,3-Dichlorobenzene		10	<10	<10	<10		
1,4-Dichlorobenzene		10	<10	<10	<10		
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0		
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0		
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0		
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0		
trans-1,3-Dichloropropene		20	<20	<20	<20		
Methylene chloride		25	<25	<25	<25		
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0		
Tetrachloroethene		5.0	<5.0	91	180		
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0		
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0		
Trichloroethene		5.0	<5.0	2,300	8,700		
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0		
Vinyl chloride		5.0	<5.0	<5.0	<5.0		
SURROGATE	SPK CONC	ACP%	MB %RC	%RC			
			0200		i i		

 $^{
m MDL}$ = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); $^{
m JA}$ = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

Reporting Unit: μg/kg							
DATE ANALYZED			12-09-97	12-09-97	12-09-97		
DATE EXTRACTED				n/a	n/a		
D:	ILUTION :	FACTOR		5	5		
Li	AB SAMPL	E I.D.		97120229	97120230		
CLIE	NT SAMPL	E I.D.		B19-16	B19-21		
COMPOUND		MDL	MB				
Bromodichloromethane		5.0	<5.0	<5.0	<5.0		
Bromoform		5.0	<5.0	<5.0	<5.0		
Bromomethane		5.0	<5.0	<5.0	<5.0		
Carbon tetrachloride		5.0	<5.0	<5.0	<5.0		
Chlorobenzene		5.0	<5.0	<5.0	<5.0		
Chlorodibromomethane		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
2-Chloroethyl vinyl ether	•	25	<25	<25	<25		
Chloroform		5.0	<5.0	<5.0	<5.0		
Chloromethane		10	<10	<10	<10		
1,2-Dichlorobenzene		10	<10	<10	<10		
1,3-Dichlorobenzene		10	<10	<10	<10		
1,4-Dichlorobenzene		10	<10	<10	<10		
1,1-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,2-Dichloroethane		5.0	<5.0	<5.0	<5.0		
1,1-Dichloroethene		5.0	<5.0	<5.0	<5.0		
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0	<5.0		
1,2-Dichloropropane		5.0	<5.0	<5.0	<5.0		
cis-1,3-Dichloropropene		5.0	<5.0	<5.0	<5.0		
trans-1,3-Dichloropropene		20	<20	<20	<20		
Methylene chloride		25	<25	<25	<25		
1,1,2,2-Tetrachloroethane		5.0	<5.0	<5.0	<5.0		
Tetrachloroethene		5.0	<5.0	420	280		
1,1,1-Trichloroethane		5.0	<5.0	<5.0	<5.0		
1,1,2-Trichloroethane		5.0	<5.0	<5.0	<5.0		
Trichloroethene		5.0	<5.0	200	1,800		
Trichlorofluoromethane		5.0	<5.0	<5.0	<5.0		
Vinyl chloride		5.0	<5.0	<5.0	<5.0		
SURROGATE	SPK CONC	ACP%	MB %RC	%RC			
1,4-dichlorobutane	20	78-115	97	102	106		

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL);
NA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

DATE ANALYZED 12-09-97 12-09-97 12-09-97 DATE EXTRACTED n/a n/a DILUTION FACTOR 5 LAB SAMPLE I.D. 97120231 97120232 CLIENT SAMPLE I.D. B19-26 B19-31 COMPOUND MDL MB Bromodichloromethane 5.0 < 5.0 < 5.0 < 5.0 Bromoform 5.0 < 5.0 < 5.0 <5.0 Bromomethane 5.0 <5.0 <5.0 < 5.0 Carbon tetrachloride 5.0 <5.0 < 5.0 < 5.0 Chlorobenzene 5.0 < 5.0 < 5.0 <5.0 Chlorodibromomethane 5.0 < 5.0 < 5.0 < 5.0 Chloromethane 10 <10 <10 <10 2-Chloroethyl vinyl ether 25 < 25 <25 <25 Chloroform 5.0 <5.0 <5.0 < 5.0 Chloromethane 10 <10 <10 <10 1,2-Dichlorobenzene 10 <10 <10 <10 1,3-Dichlorobenzene 10 <10 <10 <10 1,4-Dichlorobenzene 10 <10 <10 <10 1,1-Dichloroethane 5.0 <5.0 < 5.0 < 5.0 1,2-Dichloroethane 5.0 <5.0 <5.0 < 5.0 1,1-Dichloroethene 5.0 < 5.0 <5.0 <5.0 Trans 1,2-Dichloroethene 5.0 <5.0 < 5.0 < 5.0 1,2-Dichloropropane 5.0 < 5.0 < 5.0 < 5.0 cis-1,3-Dichloropropene 5.0 <5.0 <5.0 < 5.0 trans-1,3-Dichloropropene 20 <20 <20 < 20 Methylene chloride 25 <25 <25 <25 1,1,2,2-Tetrachloroethane 5.0 <5.0 < 5.0 < 5.0 Tetrachloroethene 5.0 <5.0 280 250 1,1,1-Trichloroethane 5.0 < 5.0 < 5.0 < 5.0 1,1,2-Trichloroethane 5.0 <5.0 < 5.0 <5.0 Trichloroethene 5.0 < 5.0 1,500 1,200 Trichlorofluoromethane 5.0 < 5.0 < 5.0 < 5.0 Vinyl chloride 5.0 <5.0 < 5.0 < 5.0 SURROGATE SPK ACP% MB %RC CONC %RC 1,4-dichlorobutane 20 78-115 97 108 97

MDL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); IA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μg/kg

DATE ANALYZED 12-09-97 12-11-97								
DA	12-09-97	12-09-97	12-11-97					
DAT	DATE EXTRACTED			n/a				
DILU	TION FACTOR		n/a 5	20				
LAB S	SAMPLE I.D.		97120233	97120234				
CLIENT S	SAMPLE I.D.		B19-36.5	B19-41				
COMPOUND	MDL	MB						
Bromodichloromethane	5.0	<5.0	<5.0	<5.0				
Bromoform	5.0	<5.0	<5.0	<5.0				
Bromomethane	5.0	<5.0	<5.0	<5.0				
Carbon tetrachloride	5.0	<5.0	<5.0	<5.0				
Chlorobenzene	5.0	<5.0	<5.0	<5.0				
Chlorodibromomethane	5.0	<5.0	<5.0	<5.0				
Chloromethane	10	<10	<10	<10				
2-Chloroethyl vinyl ether	25	<25	<25	<25				
Chloroform	5.0	<5.0	<5.0	<5.0				
Chloromethane	10	<10	<10	<10				
1,2-Dichlorobenzene	10	<10	<10	<10				
1,3-Dichlorobenzene	10	<10	<10	<10				
1,4-Dichlorobenzene	10	<10	<10	<10				
1,1-Dichloroethane	5.0	<5.0	<5.0	<5.0				
1,2-Dichloroethane	5.0	<5.0	<5.0	<5.0				
1,1-Dichloroethene	5.0	<5.0	<5.0	<5.0				
Trans 1,2-Dichloroethene	5.0	<5.0	<5.0	<5.0				
1,2-Dichloropropane	5.0	<5.0	<5.0	<5.0				
cis-1,3-Dichloropropene	5.0	<5.0	<5.0	<5.0				
trans-1,3-Dichloropropene	20	<20	<20	<20				
Methylene chloride	25	<25	<25	<25				
1,1,2,2-Tetrachloroethane	5.0	<5.0	<5.0	<5.0				
Tetrachloroethene	5.0	<5.0	<0.5	160				
1,1,1-Trichloroethane	5.0	<5.0	<5.0	<5.0				
1,1,2-Trichloroethane	5.0	<5.0	<5.0	<5.0				
Trichloroethene	5.0	<5.0	110	4,000				
Trichlorofluoromethane	5.0	<5.0	<5.0	<5.0				
Vinyl chloride	5.0	<5.0	<5.0	<5.0				
SURROGATE SP		МВ	%RC					
Col		%RC						
1,4-dichlorobutane 20	78-115	114	97	114				

 $^{1}DL = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); MA = Not Analyzed$

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 ANALYTICAL TEST RESULT Reporting Unit: μ g/kg

DATE ANALYZED 12-09-97 12-11-97								
	12-09-97	12-11-97						
		n/a						
	ILUTION F			20				
	AB SAMPLE			97120235				
	NT SAMPLE	I.D.		B19-46				
COMPOUND		MDL	MB					
Bromodichloromethane		5.0	<5.0	<5.0				
Bromoform		5.0	<5.0	<5.0				
Bromomethane		5.0	<5.0	<5.0				
Carbon tetrachloride		5.0	<5.0	<5.0				
Chlorobenzene		5.0	<5.0	<5.0				
Chlorodibromomethane		5.0	<5.0	<5.0				
Chloromethane		10	<10	<10				
2-Chloroethyl vinyl ether	<u> </u>	25	<25	<25				
Chloroform		5.0	<5.0	<5.0				
Chloromethane		10	<10	<10				
1,2-Dichlorobenzene		10	<10	<10				
1,3-Dichlorobenzene		10	<10	<10				
1,4-Dichlorobenzene		10	<10	<10				
1,1-Dichloroethane		5.0	<5.0	<5.0				
1,2-Dichloroethane		5.0	<5.0	<5.0				
1,1-Dichloroethene		5.0	<5.0	<5.0				
Trans 1,2-Dichloroethene		5.0	<5.0	<5.0				
1,2-Dichloropropane		5.0	<5.0	<5.0				
cis-1,3-Dichloropropene		5.0	<5.0	<5.0				
trans-1,3-Dichloropropene)	20	<20	<20				
Methylene chloride		25	<25	<25				
1,1,2,2-Tetrachloroethane	;	5.0	<5.0	<5.0				
Tetrachloroethene		5.0	<5.0	180				
1,1,1-Trichloroethane		5.0	<5.0	<5.0				
1,1,2-Trichloroethane	5.0	<5.0	<5.0					
Trichloroethene	5.0	<5.0	4,300					
Trichlorofluoromethane	5.0	<5.0	<5.0					
Vinyl chloride		5.0	<5.0	<5.0				
SURROGATE	SPK CONC	ACP%	MB %RC	%RC				
1,4-dichlorobutane	20	78-115	114	115				

 $^{4\mathrm{DL}}$ = Method Detection Limit; MB = Method Blank; ND = Not Detected (Below MDL); 1 VA = Not Analyzed

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 QA / QC REPORT Reporting Unit: μg/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 12/08/97

Batch #:

LAB Sample 1.D.: 97120207

Analyte	R1	\$P CONC	MŞ	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethane	0.0	20	21	22	105	110	5	59-115	10
Trichloroethene	0.0	20	21	21	105	105	0	79-139	18
Tertachloroethene	0.0	20	21	21	105	105	0	50-141	11

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MSD = MSD = Relative Percent Difference.

ACP = Acceptable Range of Percent; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 12/08/97

Batch #:

LAB Sample I.D.: OCA 3880

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP %
1,1-Dicholoroethane	20	20	100	80- 120
1,1,1-Trichloroethane	20	18	90	80- 120
Bromoform	20	24	120	80- 120

ANALYST:	Mitra Samiei	DATE:	12/11/97

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 QA / QC REPORT Reporting Unit: μg/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 12/09/97

Batch #:

LAB Sample I.D.: OCA 200

Analyte	R1	SP CONC	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethane	0.0	20	21	21	105	105	0	59-115	10
Trichloroethene	0.0	20	21	22	105	110	5	79-139	18
Tertachloroethene	0.0	20	20	22	100	110	10	50-141	11

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MSD ; RPD = Relative Percent Difference.

ACP = Acceptable Range of Percent ; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative

Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 12/09/97

Batch #:

LAB Sample I.D.: OCA 4198

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP %
1,1-Dicholoroethane	20	22	110	80- 120
1,1,1-Trichloroethane	20	21	105	80- 120
Bromoform	20	24	120	80- 120

ANALYST: Mitra Samiei	DATE: 12/	11/97

3002 Dow, Suite 532, Tustin, CA 92780 (714) 832-0064 Fax (714) 832-0067 4620 E. Elwood, Suite 4, Phoenix, AZ 85040 (602) 736-0960 Fax (602) 736-0970

8010 QA / QC REPORT Reporting Unit: μg/kg

1. Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Date Performed: 12/11/97

Batch #:

LAB Sample I.D.: 97120193

Analyte	R1	SP CONC	MS	MSD	%MS	%MSD	RPD	ACP %MS	ACP RPD
1,1-Dichloroethane	0.0	20	21	21	105	105	0	59-115	10
Trichloroethene	0.0	20	21	21	105	105	0	79-139	18
Tertachloroethene	0.0	20	21	21	105	105	0	50-141	11

SPK CONC = Spiking Concentration (\leq 5 X PQL); PQL = Practical Quantitation Limit. %MS = Percent Recovery of MSD (MSD) = Percent Recovery of MSD; RPD = Relative Percent Difference.

ACP = Acceptable Range of Percent ; INITIAL RF_{ave} = Average Response Factor From Initial calibration;

DAILY RF = Response Factor From Daily Calibration; %RSD = Percent Relative Standard Deviation; R1 = Result of first analysis.

2. Laboratory Quality Control check sample

Date Performed: 12/11/97

Batch #:

LAB Sample I.D.: OCA 4198

ANALYTE	SPK CONC	RESULTS	%RECOVERY	ACP %
1,1-Dicholoroethane	20	19	95	80- 120
1,1,1-Trichloroethane	20	18	90	80- 120
Bromoform	20	20	100	80- 120

ANALYST: Mitra Samiei	DATE: 12/11/97

Phone message ORANGE COAST ANALYTICAL, INC.

Initials: myle	Date: 12-05
CLIENT: EKT PROJECT: Webb	CONTACT: Rob Hesse
Status: XIn Progress Date Received: 12-0	3, 1
Samples: Action I	zaznazouna;
Somples received but not (put on hold) & B-15	5-5.5,14.5, 34.5,48 1-56
	8-6, 25.5
ontainers Requested: _vow vials _glass jars	Method Shipment:coolerFed-Ex ASAPbox UPS
	Deliver by Will Call on Include: Chain of Custody Blue Ice
•	·

Erler & Kalinowski, Inc.

Consulting Engineers and Scientists 2951 28th Street, Suite 1020 Santa Monica, California 90405 (310) 314-8855 Fax (310) 314-8850

FACSIMILE TRANSMISSION COVER SHEET

DATE: December 5, 1997 TIME: 1;52 PM
TO: Marie
FIRM NAME: Orange Coast Analytical
THIRCOPIER NUMBER OF ADDRESSEE: 714-434-0067
FROM: Rob Hesse
TOTAL NUMBER OF PAGES TRANSMITTED INCLUDING COVER SHEET: 1
PROJECT: Webb PROJECT NUMBER: 961025.02
WE ARE SENDING YOU A COPY OF:
() Report () Specifications () Other
DESCRIPTION:
Reporting information for 8010 analyses of samples collected on 12/02/97 and 12/03/97.
THESE ARE TRANSMITTED AS CHECKED BELOW:
() As Requested () For Review and Comments () For Information and Coordination
REMARKS:
Please report results of analyses with the following sample identification number change:
Change boring ID Number B-#-# to the format B#-# using the same ID numbers as indicated by the samples (e.g. B-14-10 will be reported as sample number B14-10). Many thanks.

PAGE 1 OF 5

CHAIN OF CUSTODY / SAMPLE ANALYSIS REQUEST

Erler & Kalinowski, Inc.

ON ANGE COAST STEVE MILLER ROB HESSE 2/47 2/ Analytical Laboratory: Report Results To: Phone Number: Date Sampled: Sampled By: FIRESTONO BLUD, SOUTH BATE 961025.00 5030 WEBB Source of Samples: Project Number: Project Name: Location

Required By (Date/Time) 64 Results 121/21 (310) 314-8855 (EPA Method Number) Analyses Requested 8010 METHOD Collected 05:21 50:21 10:30 54:01 11:20 16:06 8.18 96:81 Time 14:00 16.00 Number and Type of Containers BRASS × Sample 7105 Type d B-15-35.5 B-15-44.5 B-15-26.5 8-15-20.5 12-51 8-15-40 Field Sample 8-15-16 8-16-6 8-15-10 11-91-8 Special Instructions: I D Ø Sample Lab

	199		
Received By:		12-5-91 10,00 cm cm, Vay Cay	
Date Time	Le IEKI 12/4/97 16:00	15-5-51	
Relinquished By: Name Signature Affixfation	The nesse Man		

FINE LUES

CHAIN OF CUSTODY / SAMPLE ANALYSIS REQUEST

Erler & Kalinowski, Inc.

			Analytical Laboratory: 0% 1/1 0	
Froject Number: 96/c	20.520196		UNANGE COAST	
Project Name: W18B	8		Date Sampled: (2/2/97	
pless			Sampled By: Rob Hesse	
ı	Elpasmie Dilla C.		Report Results To: STEVE MILLER	
074	THE BUNE SOUTH GATE	1.5	Phone Number: (310) 314-8855	
a a	æ	Time	Analyses Beausated	ulte
R-16-11	or containers	Collected		red By /Time)
R-16-71	X BILASS	16:12	Wenter 8010	6
17 01 0	7	22:91	121/2	
07-01-0		16:30		
0-16-31		16.20		
8-16-35.5		10:3		
B-16-41	7/	16.55		
D -11. 11	7	17:00		
ah = al - a	9	80:21		
19-91-91	,	51:21		
Special Instructions:				

Roceived By:	2000	12-59 10:00 cm Down Carried	
re Affilation Date Time	100 HESSE 1 WAR 1/4 1/67 16:00	I COD (01) (15-51)	

lave 3 of 5.

CHAIN OF CUSTODY / SAMPLE ANALYSIS REQUEST

Erler & Kalinowski, Inc.

Analytical Laboratory: Oxinte Const ROB HESSE 197 12/3/ Date Sampled: Sampled By: 961025,02 WEBB Project Number: Project Name:

BLVD., SOUTH GATE 5030 ARESTONE Source of Samples: Location

Lab

STEVE MILLER

Report Results To:

Required by (Date/Time) Results 121/21 Phone Number: (310) 314-8855 (EPA Method Number) Analyses Requested 8010 Mentoo Collected 8:50 10:35 8:40 0.23 Time 9:30 02:6 9:50 10:00 10:10 9:10 Number and Type of Containers BA455 Sample Type 2016 8-17-53.5 8-17-31.5 B-17-16 3-17-26 -17-6 8-17-36 B-17-46 Sample 12-17-21 B-17- #1 11-11-8 Field Special Instructions: 00 Sample

/ Affiliation 02	ely
Time Name / Signature / Affiliation	10:00m my Varkawely
19h Date Time (EKI 12/4/97 16:00	\frac{1}{2}
Relinguished By: Name / Signature / Affiliat Kob / ESSE / W	

VASE 4 of S

CHAIN OF CUSTODY / SAMPLE ANALYSIS REQUEST

Erler & Kalinowski, Inc.

Analytical Laboratory: On twee Costst Project Number: 961025.02

Project Name: WEBB

Location: 5030 FIRESTONE BLVD, SOUTH GATE

Sampled By: Rob Hesse
Report Regults To: Sfew Miller
Phone Number: (310) 314-8855

Lab	5				(310) 314-8855	
Sample I D	Sample I D	Sample Type	c:	Time	Analyses Requested	Regults
	0 - 10 - 11		ere	Collected	(EPA Method Number)	Required By
	11.01.0	2011	(x B 12455	13.26	11110000	(nace/ITme)
	3-18-16		Ī	2	1400 80/0°	16/21/21
	0 10 0	+		(3:35		1
	17-01-0			14:00		
	R-18-77					
	3 0 0			54:61		
	8-18-31	_				
	2-10-26	<u> </u>		15:15		
	20 00 0			15:23		1
	18-18-41			}		_
	, e 0			15:25		
	2-10-0			15:20		
	8-19-16			2		
		+		16:50		
	12-4-9	<u> </u>	-	17.0-		
Special In	Special Instructions:			00.	V	-3

	ora / Williation	Cowahy	
Affiliation Date Time Name / Signature	1 WILLIA (EKI 12/4/97 16:00	12557 10:00cm m. Von Carrahy	
Relinguished By:	NOB HESSE		

C 40 - 39/1.

CHAIN OF CUSTODY / SAMPLE ANALYSIS REQUEST

Erler & Kalinowski, Inc.

Project Number: 961025.02	marytical Laboratory: On mile Contr
Project Name: WEBB	Date Sampled: (2 /3 / 47
ples	Sampled By: Ros Hesse
Location: 5030 FURSTONE BUYS. COUTH LAND	Report Results To: STEVE MILLER
į.	Phone Number: (310) 314-8855
Sample Sample Number and Type Time	Analyses Requested
o Saltainera	
7	ML 1150 8010
77:10	
5-11-36.5	
B-19-41	
8-19-14	
02:20	0
Special Instructions:	

/ Affiliation	awah/
Time Name / Signature / Affillation / 6.00	(2/5-97) 10:00 am EM. (ch.) Cowaly
Date Time	(1,5,2)
ature / Affixation	
Relinguished By: Name Signature 108 1586	

Environmental Geotechnology Laboratory

December 24, 1997

Erler & Kalinowski, Inc. 2951 28th Street, Suite 1020 Santa Monica, ca 90405

Attn: Mr. Rob Hesse

RE: LABORATORY TEST RESULTS/REPORT

Project Name: Webb Project No.: 961025.02 EGL Job No.: 97-065-001

Gentlemen:

We have completed the testing program conducted on samples from the Webb project. The tests were performed in accordance with testing procedures as follows:

TEST	METHOD		
Air Permeability	API RP40		
Moisture Content & Density	ASTM D2937		
Total Organic Carbon	Walkley-Black		

Enclosed is the Summary of Laboratory Test Results. The invoice for services provided is also included.

We appreciate the opportunity to provide testing services to Erler & Kalinowsky, Inc. Should you have any questions, please call us.

Sincerely yours,

ack C. Lee, PE, GE

Manager

Environmental Geotechnology Laboratory

SUMMARY OF LABORATORY TEST RESULTS

PROJECT NAME: WEBB

EGL JOB NO.: 97-065-001

PROJECT NO.: 961025.02

CLIENT: ERLER & KALINOWSKI

DATE: 12-22-97

SUMMARIZED BY: M. TAN

BORING	DEPTH	MOISTURE	DRY	тос	AIR PERM	IEABILITY
NO	1	CONTENT	DENSITY			RP40
		ASTM	ASTM	WALKLEY-	EFFECTIVE	AIR
		D2216	D2937	BLACK	PERM	CONDUCTIVITY
	(FT)	(%)	(PCF)	(%)	(MILLIDARCY)	(CM/SEC)
B-15	15	22.3	102.1	0.88		NO FLOW
B-15	31.5	35.8	82.8	0.96		NO FLOW
B-15	36	10.9	112.8	ND	452.7	3.0E-005
B-15	47.5	24.1	95.9	0.34		NO FLOW
B-16	16.5	26.6	90.3	0.18	0.7	9.4E-008
B-16	26.5	39.9	85.4	1.07		NO FLOW
B-16	36	7.0	101.6	0.10	1246.4	8.2E-05
B-16	46.5	25.3	105.8	0.36	0.4	5.2E-007
B-17	16.5	23.4	108.9	0.61		NO FLOW
B-17	26.5	38.1	89.3	1.11		NO FLOW
B-17	36.5	26.1	99.4	0.57	0.6	9.2E-008
B-17	46.5	21.5	108.0	0.58	1.1	1.4E-007

NOTES:

ND = NON-DETECTABLE

Appendix E

Laboratory Reports for Soil Geotechnical Analyses